CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Zui Fujimoto"
Zui Fujimoto (talk | contribs) |
Zui Fujimoto (talk | contribs) |
||
(11 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | [[Image:ZuiC2.jpg| | + | [[Image:ZuiC2.jpg|150px|right]] |
− | '''Zui FUJIMOTO''' is a research scientist in [http://www. | + | '''Zui FUJIMOTO''' is a research scientist in [http://www.naro.affrc.go.jp/english/index.html National Agriculture and Food Research Organization](NARO), Japan. He received his Ph.D. from the Graduate School of Agricultural and Life Sciences, The University of Tokyo. His research interests are the structural insights into protein functions of agricultural and food chemical use. He acts as a [[Responsible Curator]] for the [[GH66|Glycoside Hydrolase Family 66 (GH66)]] page. |
+ | He has determined the crystal structures of | ||
− | * GH10 endo-1,4-β-xylanase <cite>Fujimoto2000</cite> | + | * [[GH10]] endo-1,4-β-xylanase <cite>Fujimoto2000</cite> |
− | * GH13 α-amylase <cite>Fujimoto1998 Suvd2001</cite> | + | * [[GH13]] α-amylase <cite>Fujimoto1998 Suvd2001</cite> |
− | * GH27 α-galactosidase <cite>Fujimoto2003 Fujimoto2009</cite> and β-L-arabinopyranosidase <cite>Ichinose2009</cite> | + | * [[GH27]] α-galactosidase <cite>Fujimoto2003 Fujimoto2009</cite> and β-L-arabinopyranosidase <cite>Ichinose2009</cite> |
− | * GH43 exo-1,5-α-L-arabinofuranosidase <cite>Fujimoto2010</cite> | + | * [[GH31]] α-1,6-glucosyltransferase <cite>Fujimoto2017b</cite> |
− | * GH66 dextranase <cite>Suzuki2012</cite> and cycloisomaltooligosaccharide glucanotransferase | + | |
− | * GH79 β-glucuronidase <cite>Michikawa2012</cite> | + | * [[GH43]] exo-1,5-α-L-arabinofuranosidase <cite>Fujimoto2010</cite> |
+ | * [[GH62]] α-L-arabinofuranosidase <cite>Maehara2014</cite> | ||
+ | * [[GH66]] dextranase <cite>Suzuki2012</cite> and cycloisomaltooligosaccharide glucanotransferase<cite>Suzuki2014 Fujimoto2017a</cite> | ||
+ | * [[GH78]] α-L-rhamnosidase <cite>Fujimoto2013</cite> | ||
+ | * [[GH79]] β-glucuronidase <cite>Michikawa2012</cite> | ||
* GT5 starch synthase <cite>Momma2012</cite> | * GT5 starch synthase <cite>Momma2012</cite> | ||
Line 22: | Line 27: | ||
#Fujimoto2010 pmid=20739278 | #Fujimoto2010 pmid=20739278 | ||
#Suzuki2012 pmid=22337884 | #Suzuki2012 pmid=22337884 | ||
+ | #Fujimoto2013 pmid=23486481 | ||
#Michikawa2012 pmid=22367201 | #Michikawa2012 pmid=22367201 | ||
#Momma2012 pmid=22878205 | #Momma2012 pmid=22878205 | ||
+ | #Suzuki2014 pmid=24616103 | ||
+ | #Maehara2014 pmid=24482228 | ||
+ | #Fujimoto2017a pmid=28385816 | ||
+ | #Fujimoto2017b pmid=28698247 | ||
</biblio> | </biblio> | ||
+ | |||
+ | [[Category:Contributors|Fujimoto,Zui]] |
Latest revision as of 16:28, 30 October 2017
Zui FUJIMOTO is a research scientist in National Agriculture and Food Research Organization(NARO), Japan. He received his Ph.D. from the Graduate School of Agricultural and Life Sciences, The University of Tokyo. His research interests are the structural insights into protein functions of agricultural and food chemical use. He acts as a Responsible Curator for the Glycoside Hydrolase Family 66 (GH66) page. He has determined the crystal structures of
- GH10 endo-1,4-β-xylanase [1]
- GH13 α-amylase [2, 3]
- GH27 α-galactosidase [4, 5] and β-L-arabinopyranosidase [6]
- GH31 α-1,6-glucosyltransferase [7]
- GH43 exo-1,5-α-L-arabinofuranosidase [8]
- GH62 α-L-arabinofuranosidase [9]
- GH66 dextranase [10] and cycloisomaltooligosaccharide glucanotransferase[11, 12]
- GH78 α-L-rhamnosidase [13]
- GH79 β-glucuronidase [14]
- GT5 starch synthase [15]
- Fujimoto Z, Kuno A, Kaneko S, Yoshida S, Kobayashi H, Kusakabe I, and Mizuno H. (2000). Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. J Mol Biol. 2000;300(3):575-85. DOI:10.1006/jmbi.2000.3877 |
- Fujimoto Z, Takase K, Doui N, Momma M, Matsumoto T, and Mizuno H. (1998). Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. J Mol Biol. 1998;277(2):393-407. DOI:10.1006/jmbi.1997.1599 |
- Suvd D, Fujimoto Z, Takase K, Matsumura M, and Mizuno H. (2001). Crystal structure of Bacillus stearothermophilus alpha-amylase: possible factors determining the thermostability. J Biochem. 2001;129(3):461-8. DOI:10.1093/oxfordjournals.jbchem.a002878 |
- Fujimoto Z, Kaneko S, Momma M, Kobayashi H, and Mizuno H. (2003). Crystal structure of rice alpha-galactosidase complexed with D-galactose. J Biol Chem. 2003;278(22):20313-8. DOI:10.1074/jbc.M302292200 |
- Fujimoto Z, Kaneko S, Kim WD, Park GG, Momma M, and Kobayashi H. (2009). The tetramer structure of the glycoside hydrolase family 27 alpha-galactosidase I from Umbelopsis vinacea. Biosci Biotechnol Biochem. 2009;73(10):2360-4. DOI:10.1271/bbb.90604 |
- Ichinose H, Fujimoto Z, Honda M, Harazono K, Nishimoto Y, Uzura A, and Kaneko S. (2009). A beta-l-Arabinopyranosidase from Streptomyces avermitilis is a novel member of glycoside hydrolase family 27. J Biol Chem. 2009;284(37):25097-106. DOI:10.1074/jbc.M109.022723 |
- Fujimoto Z, Suzuki N, Kishine N, Ichinose H, Momma M, Kimura A, and Funane K. (2017). Carbohydrate-binding architecture of the multi-modular α-1,6-glucosyltransferase from Paenibacillus sp. 598K, which produces α-1,6-glucosyl-α-glucosaccharides from starch. Biochem J. 2017;474(16):2763-2778. DOI:10.1042/BCJ20170152 |
- Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, and Kaneko S. (2010). Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J Biol Chem. 2010;285(44):34134-43. DOI:10.1074/jbc.M110.164251 |
- Maehara T, Fujimoto Z, Ichinose H, Michikawa M, Harazono K, and Kaneko S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. J Biol Chem. 2014;289(11):7962-72. DOI:10.1074/jbc.M113.540542 |
- Suzuki N, Kim YM, Fujimoto Z, Momma M, Okuyama M, Mori H, Funane K, and Kimura A. (2012). Structural elucidation of dextran degradation mechanism by streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J Biol Chem. 2012;287(24):19916-26. DOI:10.1074/jbc.M112.342444 |
- Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, Suzuki S, Kitamura S, Kobayashi M, Kimura A, and Funane K. (2014). Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J Biol Chem. 2014;289(17):12040-12051. DOI:10.1074/jbc.M114.547992 |
- Fujimoto Z, Kishine N, Suzuki N, Suzuki R, Mizushima D, Momma M, Kimura K, and Funane K. (2017). Isomaltooligosaccharide-binding structure of Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase. Biosci Rep. 2017;37(2). DOI:10.1042/BSR20170253 |
- Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 |
- Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S, Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z, and Kaneko S. (2012). Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. J Biol Chem. 2012;287(17):14069-77. DOI:10.1074/jbc.M112.346288 |
- Momma M and Fujimoto Z. (2012). Interdomain disulfide bridge in the rice granule bound starch synthase I catalytic domain as elucidated by X-ray structure analysis. Biosci Biotechnol Biochem. 2012;76(8):1591-5. DOI:10.1271/bbb.120305 |