CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Template:News"
Harry Brumer (talk | contribs) m |
Harry Brumer (talk | contribs) |
||
Line 1: | Line 1: | ||
− | '''13 February 2018:''' ''The intricacies of pectin deconstruction:'' Rhamnogalacturonan II (RGII) represents the most structurally complex plant cell wall polysaccharide currently known, the complete saccharification of which requires a battery of CAZymes. Under the guidance of [[Responsible Curator]] '''[[User:Harry Gilbert|Harry Gilbert]]''', four new GH pages related to RGII deconstruction were [[Curator Approved]] today. Special thanks go to [[Author]]s '''[[User:Ana Luis|Ana Luis]]''' ('''[[GH106]]''', '''[[GH139]]''', and '''[[GH141]]''') and '''[[User:Didier Ndeh|Didier Ndeh]]''' ('''[[GH138]]''') for their hard work in putting these pages together. ''Learn more about the individual, specific contributions of each of these recently | + | '''13 February 2018:''' ''The intricacies of pectin deconstruction:'' Rhamnogalacturonan II (RGII) represents the most structurally complex plant cell wall polysaccharide currently known, the complete saccharification of which requires a battery of CAZymes. Under the guidance of [[Responsible Curator]] '''[[User:Harry Gilbert|Harry Gilbert]]''', four new GH pages related to RGII deconstruction were [[Curator Approved]] today. Special thanks go to [[Author]]s '''[[User:Ana Luis|Ana Luis]]''' ('''[[GH106]]''', '''[[GH139]]''', and '''[[GH141]]''') and '''[[User:Didier Ndeh|Didier Ndeh]]''' ('''[[GH138]]''') for their hard work in putting these pages together. ''Learn more about the individual, specific contributions of each of these families (three of which have been recently uncovered) to microbial RGII utilization on their respective pages.'' |
---- | ---- | ||
'''31 January 2018:''' ''A flurry of CBM activity in the new year:'' Over the past two weeks, ''CAZypedia'' has enjoyed the promotion of no less than ''nine(!)'' [[Carbohydrate-binding modules|Carbohydrate-binding module (CBM)]] family pages to [[Curator Approved]] status, thanks to the tenacity of [[CBM]] vanguard '''[[User:Harry Gilbert|Harry Gilbert]]''' and the keen editorial oversight of '''[[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]]'''. [[CAZypedia:Assigned_pages#Carbohydrate_Binding_Module_Families|In order of appearance]], '''[[CBM2]]''', '''[[CBM10]]''', '''[[CBM15]]''', '''[[CBM29]]''', '''[[CBM66]]''', '''[[CBM60]]''' (co-authored by '''[[User:Cedric Montanier|Cedric Montanier]]'''), '''[[CBM46]]''', and '''[[CBM35]]''' all have completed pages, as does the deleted family '''[[CBM7]]'''. These pages cover many classic CBM studies and include examples of [[Carbohydrate-binding modules#Types|type A, type B, and type C CBMs]]. ''The CBM legacy runs deep - learn more about each family on [[Carbohydrate Binding Module Families|their respective pages]].'' | '''31 January 2018:''' ''A flurry of CBM activity in the new year:'' Over the past two weeks, ''CAZypedia'' has enjoyed the promotion of no less than ''nine(!)'' [[Carbohydrate-binding modules|Carbohydrate-binding module (CBM)]] family pages to [[Curator Approved]] status, thanks to the tenacity of [[CBM]] vanguard '''[[User:Harry Gilbert|Harry Gilbert]]''' and the keen editorial oversight of '''[[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]]'''. [[CAZypedia:Assigned_pages#Carbohydrate_Binding_Module_Families|In order of appearance]], '''[[CBM2]]''', '''[[CBM10]]''', '''[[CBM15]]''', '''[[CBM29]]''', '''[[CBM66]]''', '''[[CBM60]]''' (co-authored by '''[[User:Cedric Montanier|Cedric Montanier]]'''), '''[[CBM46]]''', and '''[[CBM35]]''' all have completed pages, as does the deleted family '''[[CBM7]]'''. These pages cover many classic CBM studies and include examples of [[Carbohydrate-binding modules#Types|type A, type B, and type C CBMs]]. ''The CBM legacy runs deep - learn more about each family on [[Carbohydrate Binding Module Families|their respective pages]].'' |
Revision as of 02:14, 14 February 2018
13 February 2018: The intricacies of pectin deconstruction: Rhamnogalacturonan II (RGII) represents the most structurally complex plant cell wall polysaccharide currently known, the complete saccharification of which requires a battery of CAZymes. Under the guidance of Responsible Curator Harry Gilbert, four new GH pages related to RGII deconstruction were Curator Approved today. Special thanks go to Authors Ana Luis (GH106, GH139, and GH141) and Didier Ndeh (GH138) for their hard work in putting these pages together. Learn more about the individual, specific contributions of each of these families (three of which have been recently uncovered) to microbial RGII utilization on their respective pages.
31 January 2018: A flurry of CBM activity in the new year: Over the past two weeks, CAZypedia has enjoyed the promotion of no less than nine(!) Carbohydrate-binding module (CBM) family pages to Curator Approved status, thanks to the tenacity of CBM vanguard Harry Gilbert and the keen editorial oversight of Elizabeth Ficko-Blean. In order of appearance, CBM2, CBM10, CBM15, CBM29, CBM66, CBM60 (co-authored by Cedric Montanier), CBM46, and CBM35 all have completed pages, as does the deleted family CBM7. These pages cover many classic CBM studies and include examples of type A, type B, and type C CBMs. The CBM legacy runs deep - learn more about each family on their respective pages.
26 November 2017: CBM #1: Today, CBM pioneer Markus Linder completed the Carbohydrate Binding Module Family 1 page. CBM1 comprises the canonical fungal cellulose-binding modules (originally known as cellulose-binding domains), which were first found as stable cystine-knot-containing protein fragments released by controlled proteolysis of cellulases. The planar nature of the substrate-binding face, and linear arrangement of key aromatic residues, represent the archetype of CBMs that mediate glycosidase targeting to crystalline polysaccharides. Building on the original discovery of the modules now classified into CBM1 in Sweden, Markus Linder (then a Ph.D. student) and Tuula Teeri, working together across the Baltic Sea in Finland, were among the first to undertake structure-function studies and protein engineering of CBM1 using modern molecular techniques in the mid- to late-1990s. We're pleased to finally have this one in CAZYpedia - learn more about this seminal CBM family here.