CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "User:Camila Santos"

From CAZypedia
Jump to navigation Jump to search
(Created page with "200px|right '''This is an empty template to help you get started with composing your User page.''' You should begin by opening this page for ed...")
 
m
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
[[Image:Blank_user-200px.png|200px|right]]
+
[[Image:Camila_santos.jpg|200px|right]]
'''This is an empty template to help you get started with composing your User page.'''
 
  
You should begin by opening this page for editing by clicking on the Edit tab above.  Your biography goes in this area of the page.
 
  
* See [[User:Gerlind_Sulzenbacher]] for an example. You may copy text from this example by opening the page in another browser window and clicking the "Edit" tab.
+
Camila Santos obtained her Ph.D. in Functional and Molecular Biology (with emphasis in Biochemistry) from the University of Campinas in 2009. Since then, she investigates the molecular mechanisms governing the action of CAZymes as researcher at the Brazilian Biorenewables National Laboratory. She has contributed to structural and functional studies of CAZymes from families [[GH2]] <cite>Domingues2018</cite>, [[GH5]] <cite>Santos2012a,Santos2012b,Alvarez2013a,Santos2015</cite>, [[GH10]] <cite>Santos2010,Alvarez2013b,Santos2014a</cite>, [[GH11]] <cite>Ribeiro2011</cite>, [[GH12]] <cite>Furtado2015</cite>, [[GH16]] <cite>Cota2011</cite>, [[GH39]] <cite>Santos2012c,Morais2020</cite>, [[GH43]] <cite>Santos2014b</cite>, [[GH51]] <cite>Souza2011,Santos2018</cite>, [[GH57]] <cite>Santos2011</cite> and [[GH128]] <cite>Santos2020</cite>. Her most recent contribution is on [[GH128]] <cite>Santos2020</cite>, which substantially expands the understanding of the molecular mechanisms for breakdown and modification of β-1,3-glucans.
* Add your publications in the list below using PubMed IDs and cite them in the text like this <cite>Gilbert2008</cite>.
 
* Please upload a picture of yourself using the "Upload file" link in the Toolbox section of the left menu, and then replace the Image filename with your own.
 
  
''More specific help on these steps is available from the links under the "For contributors" section of the left page menu.''
 
  
 +
----
  
  
----
+
'''References'''
 +
<biblio>
 +
 
  
<biblio>
+
#Domingues2018 pmid=29997257
#Gilbert2008 pmid=18430603
+
#Santos2012a pmid=22155669
 +
#Santos2012b pmid=21880019
 +
#Alvarez2013a pmid=24358302
 +
#Santos2015 pmid=25714929
 +
#Santos2010 pmid=21070746
 +
#Alvarez2013b pmid=23922891
 +
#Santos2014a pmid=25266726
 +
#Ribeiro2011 pmid=22006920
 +
#Furtado2015 pmid=25605422
 +
#Cota2011 pmid=21352806
 +
#Santos2012c pmid=22993088
 +
#Morais2020 pmid=32500063
 +
#Santos2014b pmid=24469445
 +
#Souza2011 pmid=21796714
 +
#Santos2018 pmid=30127853
 +
#Santos2011 pmid=21104698
 +
#Santos2020 pmid=32451508
  
 
</biblio>
 
</biblio>
 +
  
 
<!-- Do not remove this Category tag -->
 
<!-- Do not remove this Category tag -->
 
[[Category:Contributors|Santos,Camilla]]
 
[[Category:Contributors|Santos,Camilla]]

Latest revision as of 13:20, 23 June 2020

Camila santos.jpg


Camila Santos obtained her Ph.D. in Functional and Molecular Biology (with emphasis in Biochemistry) from the University of Campinas in 2009. Since then, she investigates the molecular mechanisms governing the action of CAZymes as researcher at the Brazilian Biorenewables National Laboratory. She has contributed to structural and functional studies of CAZymes from families GH2 [1], GH5 [2, 3, 4, 5], GH10 [6, 7, 8], GH11 [9], GH12 [10], GH16 [11], GH39 [12, 13], GH43 [14], GH51 [15, 16], GH57 [17] and GH128 [18]. Her most recent contribution is on GH128 [18], which substantially expands the understanding of the molecular mechanisms for breakdown and modification of β-1,3-glucans.




References

  1. Domingues MN, Souza FHM, Vieira PS, de Morais MAB, Zanphorlin LM, Dos Santos CR, Pirolla RAS, Honorato RV, de Oliveira PSL, Gozzo FC, and Murakami MT. (2018). Structural basis of exo-β-mannanase activity in the GH2 family. J Biol Chem. 2018;293(35):13636-13649. DOI:10.1074/jbc.RA118.002374 | PubMed ID:29997257 [Domingues2018]
  2. dos Santos CR, Paiva JH, Meza AN, Cota J, Alvarez TM, Ruller R, Prade RA, Squina FM, and Murakami MT. (2012). Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. J Struct Biol. 2012;177(2):469-76. DOI:10.1016/j.jsb.2011.11.021 | PubMed ID:22155669 [Santos2012a]
  3. Santos CR, Paiva JH, Sforça ML, Neves JL, Navarro RZ, Cota J, Akao PK, Hoffmam ZB, Meza AN, Smetana JH, Nogueira ML, Polikarpov I, Xavier-Neto J, Squina FM, Ward RJ, Ruller R, Zeri AC, and Murakami MT. (2012). Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem J. 2012;441(1):95-104. DOI:10.1042/BJ20110869 | PubMed ID:21880019 [Santos2012b]
  4. Alvarez TM, Paiva JH, Ruiz DM, Cairo JP, Pereira IO, Paixão DA, de Almeida RF, Tonoli CC, Ruller R, Santos CR, Squina FM, and Murakami MT. (2013). Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One. 2013;8(12):e83635. DOI:10.1371/journal.pone.0083635 | PubMed ID:24358302 [Alvarez2013a]
  5. Dos Santos CR, Cordeiro RL, Wong DW, and Murakami MT. (2015). Structural basis for xyloglucan specificity and α-d-Xylp(1 → 6)-D-Glcp recognition at the -1 subsite within the GH5 family. Biochemistry. 2015;54(10):1930-42. DOI:10.1021/acs.biochem.5b00011 | PubMed ID:25714929 [Santos2015]
  6. Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, and Murakami MT. (2010). Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1. Biochem Biophys Res Commun. 2010;403(2):214-9. DOI:10.1016/j.bbrc.2010.11.010 | PubMed ID:21070746 [Santos2010]
  7. Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira Pereira I, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira Neto M, Murakami MT, and Squina FM. (2013). Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One. 2013;8(7):e70014. DOI:10.1371/journal.pone.0070014 | PubMed ID:23922891 [Alvarez2013b]
  8. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, and Murakami MT. (2014). Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. J Biol Chem. 2014;289(46):32186-32200. DOI:10.1074/jbc.M114.605105 | PubMed ID:25266726 [Santos2014a]
  9. Ribeiro LF, Furtado GP, Lourenzoni MR, Costa-Filho AJ, Santos CR, Nogueira SC, Betini JA, Polizeli Mde L, Murakami MT, and Ward RJ. (2011). Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance. J Biol Chem. 2011;286(50):43026-38. DOI:10.1074/jbc.M111.253419 | PubMed ID:22006920 [Ribeiro2011]
  10. Furtado GP, Santos CR, Cordeiro RL, Ribeiro LF, de Moraes LA, Damásio AR, Polizeli Mde L, Lourenzoni MR, Murakami MT, and Ward RJ. (2015). Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol. 2015;99(12):5095-107. DOI:10.1007/s00253-014-6324-0 | PubMed ID:25605422 [Furtado2015]
  11. Cota J, Alvarez TM, Citadini AP, Santos CR, de Oliveira Neto M, Oliveira RR, Pastore GM, Ruller R, Prade RA, Murakami MT, and Squina FM. (2011). Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila. Biochem Biophys Res Commun. 2011;406(4):590-4. DOI:10.1016/j.bbrc.2011.02.098 | PubMed ID:21352806 [Cota2011]
  12. Santos CR, Polo CC, Corrêa JM, Simão Rde C, Seixas FA, and Murakami MT. (2012). The accessory domain changes the accessibility and molecular topography of the catalytic interface in monomeric GH39 β-xylosidases. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 10):1339-45. DOI:10.1107/S0907444912028491 | PubMed ID:22993088 [Santos2012c]
  13. de Morais MAB, Polo CC, Domingues MN, Persinoti GF, Pirolla RAS, de Souza FHM, Correa JBL, Dos Santos CR, and Murakami MT. (2020). Exploring the Molecular Basis for Substrate Affinity and Structural Stability in Bacterial GH39 β-Xylosidases. Front Bioeng Biotechnol. 2020;8:419. DOI:10.3389/fbioe.2020.00419 | PubMed ID:32500063 [Morais2020]
  14. Santos CR, Polo CC, Costa MC, Nascimento AF, Meza AN, Cota J, Hoffmam ZB, Honorato RV, Oliveira PS, Goldman GH, Gilbert HJ, Prade RA, Ruller R, Squina FM, Wong DW, and Murakami MT. (2014). Mechanistic strategies for catalysis adopted by evolutionary distinct family 43 arabinanases. J Biol Chem. 2014;289(11):7362-73. DOI:10.1074/jbc.M113.537167 | PubMed ID:24469445 [Santos2014b]
  15. Souza TA, Santos CR, Souza AR, Oldiges DP, Ruller R, Prade RA, Squina FM, and Murakami MT. (2011). Structure of a novel thermostable GH51 α-L-arabinofuranosidase from Thermotoga petrophila RKU-1. Protein Sci. 2011;20(9):1632-7. DOI:10.1002/pro.693 | PubMed ID:21796714 [Souza2011]
  16. Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Büchli F, de Oliveira PSL, Gozzo FC, and Murakami MT. (2018). The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. Biotechnol Biofuels. 2018;11:223. DOI:10.1186/s13068-018-1212-y | PubMed ID:30127853 [Santos2018]
  17. Santos CR, Tonoli CC, Trindade DM, Betzel C, Takata H, Kuriki T, Kanai T, Imanaka T, Arni RK, and Murakami MT. (2011). Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins. 2011;79(2):547-57. DOI:10.1002/prot.22902 | PubMed ID:21104698 [Santos2011]
  18. Santos CR, Costa PACR, Vieira PS, Gonzalez SET, Correa TLR, Lima EA, Mandelli F, Pirolla RAS, Domingues MN, Cabral L, Martins MP, Cordeiro RL, Junior AT, Souza BP, Prates ÉT, Gozzo FC, Persinoti GF, Skaf MS, and Murakami MT. (2020). Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family. Nat Chem Biol. 2020;16(8):920-929. DOI:10.1038/s41589-020-0554-5 | PubMed ID:32451508 [Santos2020]

All Medline abstracts: PubMed