CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Auxiliary Activity Family 5"

From CAZypedia
Jump to navigation Jump to search
Line 42: Line 42:
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
AA5 share a seven-bladed β-propeller fold <cite>Ito1994,Yin2015,Mathieu202</cite> as the catalytic domain containing the active site.
 
  
 +
AA5 share a seven-bladed β-propeller fold <cite>Ito1994,Yin2015,Mathieu202</cite> as the catalytic domain containing the active site.
 
== Family Firsts ==
 
== Family Firsts ==
 
;First stereochemistry determination: Content is to be added here.
 
;First stereochemistry determination: Content is to be added here.
Line 53: Line 53:
 
<biblio>
 
<biblio>
  
# Whittaker1996 pmid= 8557673
+
# Whittaker1996 pmid=8557673
  
#Whittaker2003 pmid= 12797833
+
#Whittaker2003 pmid=12797833
  
 
#Andberg2017 pmid=28778886
 
#Andberg2017 pmid=28778886
  
#Yin2015 pmid= 26680532
+
#Yin2015 pmid=26680532
  
#Oide2019 pmid= 30885320
+
#Oide2019 pmid=30885320
  
 
#Mathieu2020 Mathieu, Y., Offen, W. A., Forget, S. M., Ciano, L., Viborg, A. H., Blagova, E., Henrissat, B., Walton, P.H, Davies, G.J, and Brumer, H. (2020). Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catalysis, 10(5), 3042-3058. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b04727
 
#Mathieu2020 Mathieu, Y., Offen, W. A., Forget, S. M., Ciano, L., Viborg, A. H., Blagova, E., Henrissat, B., Walton, P.H, Davies, G.J, and Brumer, H. (2020). Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catalysis, 10(5), 3042-3058. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b04727
  
#Kersten1987 pmid= 3553159
+
#Kersten1987 pmid=3553159
  
 
#Ogel1994 Ögel, Z. B.;  Brayford, D.; McPherson, M. J., (1994). Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of Fusarium. Mycol. Res., 98 (4), 474-480. https://doi.org/10.1016/j.pep.2014.12.010
 
#Ogel1994 Ögel, Z. B.;  Brayford, D.; McPherson, M. J., (1994). Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of Fusarium. Mycol. Res., 98 (4), 474-480. https://doi.org/10.1016/j.pep.2014.12.010
  
#Cooper1959 pmid= 13641238
+
#Cooper1959 pmid=13641238
  
#Amaral1963 pmid= 14012475
+
#Amaral1963 pmid=14012475
  
 
#Cleveland2021a pmid=34134727
 
#Cleveland2021a pmid=34134727

Revision as of 14:13, 9 September 2021

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Auxiliary Activity Family AA5
Fold Seven-bladed β-propeller
Mechanism Copper Radical Oxidase
Active site residues known
CAZy DB link
https://www.cazy.org/AA5.html


Substrate specificities

Content is to be added here.

Authors may get an idea of what to put in each field from Curator Approved Auxiliary Activity Families and Glycoside Hydrolase Families. (TIP: Right click with your mouse and open this link in a new browser window...)

In the meantime, please see these references for an essential introduction to the CAZy classification system: [1, 2].

Kinetics and Mechanism

Content is to be added here.

Catalytic Residues

Content is to be added here.

Three-dimensional structures

AA5 share a seven-bladed β-propeller fold [3, 4, 5] as the catalytic domain containing the active site.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  2. Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, and Brumer H. (2015). Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun. 2015;6:10197. DOI:10.1038/ncomms10197 | PubMed ID:26680532 [Yin2015]
  3. Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, and Whittaker JW. (1996). Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem. 1996;271(2):681-7. DOI:10.1074/jbc.271.2.681 | PubMed ID:8557673 [Whittaker1996]
  4. Whittaker JW (2003). Free radical catalysis by galactose oxidase. Chem Rev. 2003;103(6):2347-63. DOI:10.1021/cr020425z | PubMed ID:12797833 [Whittaker2003]
  5. Andberg M, Mollerup F, Parikka K, Koutaniemi S, Boer H, Juvonen M, Master E, Tenkanen M, and Kruus K. (2017). A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol. 2017;83(20). DOI:10.1128/AEM.01383-17 | PubMed ID:28778886 [Andberg2017]
  6. Oide S, Tanaka Y, Watanabe A, and Inui M. (2019). Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol. 2019;125:13-20. DOI:10.1016/j.enzmictec.2019.02.009 | PubMed ID:30885320 [Oide2019]
  7. Mathieu, Y., Offen, W. A., Forget, S. M., Ciano, L., Viborg, A. H., Blagova, E., Henrissat, B., Walton, P.H, Davies, G.J, and Brumer, H. (2020). Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catalysis, 10(5), 3042-3058. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b04727

    [Mathieu2020]
  8. Kersten PJ and Kirk TK. (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169(5):2195-201. DOI:10.1128/jb.169.5.2195-2201.1987 | PubMed ID:3553159 [Kersten1987]
  9. Ögel, Z. B.; Brayford, D.; McPherson, M. J., (1994). Cellulose-triggered sporulation in the galactose oxidase-producing fungus Cladobotryum (Dactylium) dendroides NRRL 2903 and its re-identification as a species of Fusarium. Mycol. Res., 98 (4), 474-480. https://doi.org/10.1016/j.pep.2014.12.010

    [Ogel1994]
  10. COOPER JA, SMITH W, BACILA M, and MEDINA H. (1959). Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem. 1959;234(3):445-8. | Google Books | Open Library PubMed ID:13641238 [Cooper1959]
  11. AMARAL D, BERNSTEIN L, MORSE D, and HORECKER BL. (1963). Galactose oxidase of Polyporus circinatus: a copper enzyme. J Biol Chem. 1963;238:2281-4. | Google Books | Open Library PubMed ID:14012475 [Amaral1963]
  12. Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, and Brumer H. (2021). Two Fusarium copper radical oxidases with high activity on aryl alcohols. Biotechnol Biofuels. 2021;14(1):138. DOI:10.1186/s13068-021-01984-0 | PubMed ID:34134727 [Cleveland2021a]
  13. PMID=24967652

    [Paukner2014]
  14. PMID=25543085

    [Paukner2015]
  15. PMID=31177409#Cantarel2009 pmid=18838391

    [Faria2019]

All Medline abstracts: PubMed