CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "Carbohydrate Binding Module Family 21"

From CAZypedia
Jump to navigation Jump to search
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
+
{{CuratorApproved}}
{{UnderConstruction}}
+
* [[Author]]s: [[User:Birte Svensson|Birte Svensson]] and [[User:Stefan Janecek|Stefan Janecek]]
* [[Author]]s: ^^^Birte Svensson^^^ and ^^^Stefan Janecek^^^
+
* [[Responsible Curator]]s:  [[User:Birte Svensson|Birte Svensson]] and [[User:Stefan Janecek|Stefan Janecek]]
* [[Responsible Curator]]s:  ^^^Birte Svensson^^^ and ^^^Stefan Janecek^^^
 
 
----
 
----
  
Line 17: Line 16:
  
 
== Ligand specificities ==
 
== Ligand specificities ==
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
+
Modules from family CBM21 bind to the α-glucan starch and oligosaccharides derived from starch or related to such oligosaccharides that contain α-1,4-linked glucose and/or α-1,6-linked glucose including maltose through maltoheptaose, β- and γ-cyclodextrins, isomaltotriose and isomaltotetraose <cite>Chou2006 Chu2014 Liu2007 Tung2008</cite>. CBM21 also interacts with amylose and alters its ultrastructure as demonstrated by atomic force microscopy <cite>Jiang2012</cite>. Circular permutation enhanced the affinity for amylose <cite>Stephen2012</cite>. The domain has been described as providing mainly glucoamylase and α-amylase with the ability to bind onto raw-starch (starch granules) <cite>Ashikari1986 Bui1996 Houghton-Larsen2003 Steyn1995 Kang2004</cite>.
 
 
''Note: Here is an example of how to insert references in the text, together with the "biblio" section below:'' Please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. CBMs, in particular, have been extensively reviewed <cite>Boraston2004 Hashimoto2006 Shoseyov2006 Guillen2010</cite>.
 
  
 
== Structural Features ==
 
== Structural Features ==
''Content in this section should include, in paragraph form, a description of:''
+
Structures of CBM21 have been determined by NMR and X-ray crystallography both in free and in carbohydrate complexed form. They adopt a common β-sandwich fold and have two binding sites accommodating carbohydrate ligands similarly to other starch binding domains. The binding sites contain aromatic side chains participating in carbohydrate interaction. Initially it was described by modelling using an NMR structure of a [[CBM20]] as template <cite>Chou2006</cite> and thereafter by docking onto the NMR structure determined for CBM21 from the family [[GH15]] ''Rhizopus oryzae'' glucoamylase <cite>Liu2007</cite>. The crystal structure determined for this CBM21 in complex with β-cyclodextrin or maltoheptaose identified W47, Y83 and Y94 interacting at site I and Y32 and F58 at site II for both ligands <cite>Tung2008</cite>. Site I requires ligands with DP > 3 for binding <cite>Chu2014</cite>. A CBM21-like domain was identified in the crystal structure of barley family [[GH13]] limit dextrinase <cite>Moeller2012</cite>.
* '''Fold:''' Structural fold (beta trefoil, beta sandwich, etc.)
 
* '''Type:''' Include here Type A, B, or C and properties
 
* '''Features of ligand binding:''' Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.
 
  
 
== Functionalities ==  
 
== Functionalities ==  
''Content in this section should include, in paragraph form, a description of:''
+
CBM21s are mainly associated with some fungal glucoamylases and α-amylases of the family [[GH15]] <cite>Ashikari1986 Bui1996 Houghton-Larsen2003</cite> and [[GH13]] <cite>Steyn1995 Kang2004</cite>, respectively. This was confirmed by an exhaustive evolutionary analysis of 85 fungal genomes <cite>Chen2012</cite>. In both cases, i.e. in [[GH15]] glucoamylases and [[GH13]] α-amylases, the CBM21 precedes the catalytic domain <cite>Machovic2005</cite>. The CBM21 is present also as a part of the regulatory subunit of Ser/Thr-specific protein phosphatases that directs the protein phosphatase to glycogen <cite>Bork1998</cite>. Recently, a structural comparison identified an N-terminal CBM21-like domain in the barley [[GH13]] limit dextrinase <cite>Moeller2012</cite>, where it is followed by the module from the family [[CBM48]] succeeded by the catalytic TIM-barrel.
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
 
* '''Most Common Associated Modules:''' 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
 
* '''Novel Applications:'''  Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.
 
  
 
== Family Firsts ==
 
== Family Firsts ==
 
;First Identified
 
;First Identified
:Insert archetype here, possibly including ''very brief'' synopsis.
+
Family CBM21 was first observed as an N-terminally located domain in glucoamylase from ''Rhizopus oryzae'' <cite>Ashikari1986</cite>. The function was ascribed based on comparison of multiple forms of the glucoamylase <cite>Ashikari1986 Takahashi1982</cite> and amino acid sequence alignment <cite>Tanaka1986</cite>. The CBM21 sequence was revealed as related to that of the starch binding domain of ''Aspergillus niger'' glucoamylase <cite>Svensson1989</cite>, which has been assigned the family [[CBM20]] <cite>Machovic2005 Machovic2006 Christiansen2009</cite>.
 
;First Structural Characterization
 
;First Structural Characterization
:Insert archetype here, possibly including ''very brief'' synopsis.
+
The first CBM21 three-dimensional structure was determined by NMR for the module from the family [[GH15]] glucoamylase from ''Rhizopus oryzae'' <cite>Liu2007</cite>. The first CBM21 complex structures were determined by X-ray crystallography for that domain binding to β-cyclodextrin or maltoheptaose <cite>Tung2008</cite>.
 +
 
 +
== Novel Applications ==
 +
The CBM21 from ''Rhizopus oryzae'' glucoamylase has been introduced as a novel affinity purification tag <cite>Lin2009</cite>.     
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Cantarel2009 pmid=18838391
+
#Chou2006 pmid=16509822
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem. J. (BJ Classic Paper, online only). [http://dx.doi.org/10.1042/BJ20080382 DOI: 10.1042/BJ20080382]
+
#Chu2014 pmid=24108499
#Boraston2004 pmid=15214846
+
#Liu2007 pmid=17117925
#Hashimoto2006 pmid=17131061
+
#Tung2008 pmid=18588504
#Shoseyov2006 pmid=16760304
+
#Jiang2012 pmid=22815939
#Guillen2010 pmid=19908036
+
#Stephen2012 pmid=23226294
 +
#Ashikari1986 Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, and Yoshizumi H. “Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast.” Agric. Biol. Chem. 1986; 50: 957-64.
 +
#Bui1996 pmid=8920185
 +
#Houghton-Larsen2003 pmid=12883866
 +
#Steyn1995 pmid=8529895
 +
#Kang2004 pmid=15043869
 +
#Moeller2012 pmid=22949184
 +
#Chen2012 pmid=23166747
 +
#Machovic2005 pmid=16262690
 +
#Bork1998 pmid=9500672
 +
#Takahashi1982 pmid=6818228
 +
#Tanaka1986 Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, and Yoshizumi H. Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric. Biol. Chem. 1986; 50: 965-9.
 +
#Svensson1989 pmid=2481445
 +
#Machovic2006 pmid=17013558
 +
#Christiansen2009 pmid=19682075
 +
#Lin2009 pmid=19297701     
 
</biblio>
 
</biblio>
  
 
[[Category:Carbohydrate Binding Module Families|CBM021]]
 
[[Category:Carbohydrate Binding Module Families|CBM021]]

Latest revision as of 13:15, 18 December 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


CAZy DB link
https://www.cazy.org/CBM21.html

Ligand specificities

Modules from family CBM21 bind to the α-glucan starch and oligosaccharides derived from starch or related to such oligosaccharides that contain α-1,4-linked glucose and/or α-1,6-linked glucose including maltose through maltoheptaose, β- and γ-cyclodextrins, isomaltotriose and isomaltotetraose [1, 2, 3, 4]. CBM21 also interacts with amylose and alters its ultrastructure as demonstrated by atomic force microscopy [5]. Circular permutation enhanced the affinity for amylose [6]. The domain has been described as providing mainly glucoamylase and α-amylase with the ability to bind onto raw-starch (starch granules) [7, 8, 9, 10, 11].

Structural Features

Structures of CBM21 have been determined by NMR and X-ray crystallography both in free and in carbohydrate complexed form. They adopt a common β-sandwich fold and have two binding sites accommodating carbohydrate ligands similarly to other starch binding domains. The binding sites contain aromatic side chains participating in carbohydrate interaction. Initially it was described by modelling using an NMR structure of a CBM20 as template [1] and thereafter by docking onto the NMR structure determined for CBM21 from the family GH15 Rhizopus oryzae glucoamylase [3]. The crystal structure determined for this CBM21 in complex with β-cyclodextrin or maltoheptaose identified W47, Y83 and Y94 interacting at site I and Y32 and F58 at site II for both ligands [4]. Site I requires ligands with DP > 3 for binding [2]. A CBM21-like domain was identified in the crystal structure of barley family GH13 limit dextrinase [12].

Functionalities

CBM21s are mainly associated with some fungal glucoamylases and α-amylases of the family GH15 [7, 8, 9] and GH13 [10, 11], respectively. This was confirmed by an exhaustive evolutionary analysis of 85 fungal genomes [13]. In both cases, i.e. in GH15 glucoamylases and GH13 α-amylases, the CBM21 precedes the catalytic domain [14]. The CBM21 is present also as a part of the regulatory subunit of Ser/Thr-specific protein phosphatases that directs the protein phosphatase to glycogen [15]. Recently, a structural comparison identified an N-terminal CBM21-like domain in the barley GH13 limit dextrinase [12], where it is followed by the module from the family CBM48 succeeded by the catalytic TIM-barrel.

Family Firsts

First Identified

Family CBM21 was first observed as an N-terminally located domain in glucoamylase from Rhizopus oryzae [7]. The function was ascribed based on comparison of multiple forms of the glucoamylase [7, 16] and amino acid sequence alignment [17]. The CBM21 sequence was revealed as related to that of the starch binding domain of Aspergillus niger glucoamylase [18], which has been assigned the family CBM20 [14, 19, 20].

First Structural Characterization

The first CBM21 three-dimensional structure was determined by NMR for the module from the family GH15 glucoamylase from Rhizopus oryzae [3]. The first CBM21 complex structures were determined by X-ray crystallography for that domain binding to β-cyclodextrin or maltoheptaose [4].

Novel Applications

The CBM21 from Rhizopus oryzae glucoamylase has been introduced as a novel affinity purification tag [21].

References

Error fetching PMID 16509822:
Error fetching PMID 24108499:
Error fetching PMID 17117925:
Error fetching PMID 18588504:
Error fetching PMID 22815939:
Error fetching PMID 23226294:
Error fetching PMID 8920185:
Error fetching PMID 12883866:
Error fetching PMID 8529895:
Error fetching PMID 15043869:
Error fetching PMID 23166747:
Error fetching PMID 16262690:
Error fetching PMID 9500672:
Error fetching PMID 6818228:
Error fetching PMID 19297701:
  1. Error fetching PMID 16509822: [Chou2006]
  2. Error fetching PMID 24108499: [Chu2014]
  3. Error fetching PMID 17117925: [Liu2007]
  4. Error fetching PMID 18588504: [Tung2008]
  5. Error fetching PMID 22815939: [Jiang2012]
  6. Error fetching PMID 23226294: [Stephen2012]
  7. Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, and Yoshizumi H. “Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast.” Agric. Biol. Chem. 1986; 50: 957-64.

    [Ashikari1986]
  8. Error fetching PMID 8920185: [Bui1996]
  9. Error fetching PMID 12883866: [Houghton-Larsen2003]
  10. Error fetching PMID 8529895: [Steyn1995]
  11. Error fetching PMID 15043869: [Kang2004]
  12. Møller MS, Abou Hachem M, Svensson B, and Henriksen A. (2012). Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68(Pt 9):1008-12. DOI:10.1107/S1744309112031004 | PubMed ID:22949184 [Moeller2012]
  13. Error fetching PMID 23166747: [Chen2012]
  14. Error fetching PMID 16262690: [Machovic2005]
  15. Error fetching PMID 9500672: [Bork1998]
  16. Error fetching PMID 6818228: [Takahashi1982]
  17. Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, and Yoshizumi H. Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric. Biol. Chem. 1986; 50: 965-9.

    [Tanaka1986]
  18. Svensson B, Jespersen H, Sierks MR, and MacGregor EA. (1989). Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989;264(1):309-11. DOI:10.1042/bj2640309 | PubMed ID:2481445 [Svensson1989]
  19. Machovic M and Janecek S. (2006). Starch-binding domains in the post-genome era. Cell Mol Life Sci. 2006;63(23):2710-24. DOI:10.1007/s00018-006-6246-9 | PubMed ID:17013558 [Machovic2006]
  20. Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, and Svensson B. (2009). The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J. 2009;276(18):5006-29. DOI:10.1111/j.1742-4658.2009.07221.x | PubMed ID:19682075 [Christiansen2009]
  21. Error fetching PMID 19297701: [Lin2009]

All Medline abstracts: PubMed