CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 147"

From CAZypedia
Jump to navigation Jump to search
(Created page with "<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> {{UnderConstruct...")
 
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
 
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
{{UnderConstruction}}
+
{{CuratorApproved}}
* [[Author]]: ^^^Jonathon Briggs^^^
+
* [[Author]]: [[User:Jonathon Briggs|Jonathon Briggs]]
* [[Responsible Curator]]:  ^^^Harry Gilbert^^^
+
* [[Responsible Curator]]:  [[User:Harry Gilbert|Harry Gilbert]]
 
----
 
----
  
Line 12: Line 12:
 
|-
 
|-
 
|'''Clan'''     
 
|'''Clan'''     
|GH-x
+
|GH-A
 
|-
 
|-
 
|'''Mechanism'''
 
|'''Mechanism'''
|retaining/inverting
+
|retaining
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|known/not known
+
|known
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 29: Line 29:
  
 
== Substrate specificities ==
 
== Substrate specificities ==
Content is to be added here.
+
The founding member of [[glycoside hydrolase]] family 147, BACOVA_05493 from ''Bacteroides ovatus'' is a β1,4-galactosidase. The enzyme demonstrates a preference towards longer oligosaccharides and &beta;1,4-galactan, releasing galactopyranose from the oligosaccharide or polysaccharide chain. BACOVA_05493 is unable to hydrolyse β1,4-galactobiose <cite>Luis2017</cite>.      
 
 
Authors may get an idea of what to put in each field from ''Curator Approved'' [[Glycoside Hydrolase Families]]. ''(TIP: Right click with your mouse and open this link in a new browser window...)''
 
 
 
In the meantime, please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>.
 
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Content is to be added here.
+
<sup>1</sup>NMR analysis of the galactose product released from BACOVA_05493 action on galactotriose revealed cleavage with retention of anomeric stereochemistry <cite>Luis2017</cite>. The enzyme is believed to operate through a [[classical Koshland double-displacement mechanism]].
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Content is to be added here.
+
 
 +
Hydrophobic cluster analysis showed that BACOVA_05493 is a member of Clan GH-A. Based on this assumption the catalytic nucleophile and general acid/base residues were proposed as Glu300 and Glu203, respectively. This hypothesis was supported by mutagenesis data showing that the E300A and E203A mutants were catalytically inactive <cite>Luis2017</cite>.
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Content is to be added here.
+
 
 +
Currently there is no crystal structure of any member of GH147, although sequence analysis and hydrophobic cluster analysis predicts a fold of an (&alpha;/&beta;)<sub>8</sub> barrel.
  
 
== Family Firsts ==
 
== Family Firsts ==
;First stereochemistry determination: Content is to be added here.
+
;First stereochemistry determination: BACOVA_05493 from ''B. ovatus'' was shown to have a retaining mechanism <cite>Luis2017</cite>.    
;First catalytic nucleophile identification: Content is to be added here.
+
;First catalytic nucleophile identification: BACOVA_05493 from ''B. ovatus'' <cite>Luis2017</cite>.    
;First general acid/base residue identification: Content is to be added here.
+
;First general acid/base residue identification:   BACOVA_05493 from ''B. ovatus'' <cite>Luis2017</cite>.    
;First 3-D structure: Content is to be added here.
+
 
 +
;First 3-D structure: Currently no experimental structure is available, although BACOVA_05493 is predicted to fold into a (&alpha;/&beta;)<sub>8</sub> barrel <cite>Luis2017</cite>.  
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Cantarel2009 pmid=18838391
+
#Luis2017 pmid=29255254
#DaviesSinnott2008 Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. ''The Biochemist'', vol. 30, no. 4., pp. 26-32. [http://www.biochemist.org/bio/03004/0026/030040026.pdf Download PDF version].
 
 
</biblio>
 
</biblio>
  
 
[[Category:Glycoside Hydrolase Families|GH147]]
 
[[Category:Glycoside Hydrolase Families|GH147]]

Latest revision as of 13:15, 18 December 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH147
Clan GH-A
Mechanism retaining
Active site residues known
CAZy DB link
https://www.cazy.org/GH147.html


Substrate specificities

The founding member of glycoside hydrolase family 147, BACOVA_05493 from Bacteroides ovatus is a β1,4-galactosidase. The enzyme demonstrates a preference towards longer oligosaccharides and β1,4-galactan, releasing galactopyranose from the oligosaccharide or polysaccharide chain. BACOVA_05493 is unable to hydrolyse β1,4-galactobiose [1].

Kinetics and Mechanism

1NMR analysis of the galactose product released from BACOVA_05493 action on galactotriose revealed cleavage with retention of anomeric stereochemistry [1]. The enzyme is believed to operate through a classical Koshland double-displacement mechanism.

Catalytic Residues

Hydrophobic cluster analysis showed that BACOVA_05493 is a member of Clan GH-A. Based on this assumption the catalytic nucleophile and general acid/base residues were proposed as Glu300 and Glu203, respectively. This hypothesis was supported by mutagenesis data showing that the E300A and E203A mutants were catalytically inactive [1].

Three-dimensional structures

Currently there is no crystal structure of any member of GH147, although sequence analysis and hydrophobic cluster analysis predicts a fold of an (α/β)8 barrel.

Family Firsts

First stereochemistry determination
BACOVA_05493 from B. ovatus was shown to have a retaining mechanism [1].
First catalytic nucleophile identification
BACOVA_05493 from B. ovatus [1].
First general acid/base residue identification
BACOVA_05493 from B. ovatus [1].
First 3-D structure
Currently no experimental structure is available, although BACOVA_05493 is predicted to fold into a (α/β)8 barrel [1].

References

  1. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, and Gilbert HJ. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018;3(2):210-219. DOI:10.1038/s41564-017-0079-1 | PubMed ID:29255254 [Luis2017]