CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 75"

From CAZypedia
Jump to navigation Jump to search
(Created page with '<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> {{UnderConstruction…')
 
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
+
{{CuratorApproved}}
{{UnderConstruction}}
+
* [[Author]]: [[User:Ryszard Brzezinski|Ryszard Brzezinski]]
* [[Author]]:  
+
* [[Responsible Curator]]:  [[User:Ryszard Brzezinski|Ryszard Brzezinski]]
* [[Responsible Curator]]:  ^^^Ryszard Brzezinski^^^
 
 
----
 
----
  
Line 12: Line 11:
 
|-
 
|-
 
|'''Clan'''     
 
|'''Clan'''     
|GH-x
+
|Not assigned
 
|-
 
|-
 
|'''Mechanism'''
 
|'''Mechanism'''
|retaining/inverting
+
|Inverting
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|known/not known
+
|Inferred
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 29: Line 28:
  
 
== Substrate specificities ==
 
== Substrate specificities ==
Content is to be added here.
+
Glycoside hydrolases of family 75 include both eukaryotic (essentially fungal) and prokaryotic proteins. They have so far been characterized only from filamentous fungi. They are beta-1,4-chitosanases with endo-splitting activity <cite>Shimosaka1993 Cheng2000</cite>. The analysis of the final product of hydrolysis of partially ''N''-deacetylated chitosan by the GH75 chitosanase from ''Aspergillus fumigatus'' suggests that this enzyme cleaves preferentially GlcN-GlcN and GlcNAc-GlcN links in the polysaccharide chain <cite>Cheng2006</cite>.
 
 
This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below). Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>. You can even cite books using just the ISBN <cite>StickWilliams</cite>.  References that are not in PubMed can be typed in by hand <cite>Sinnott1990</cite>.
 
 
 
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Content is to be added here.
+
Family GH46 enzymes are classified as inverting enzymes. This has been shown by <sup>1</sup>H NMR for the enzyme from ''Aspergillus fumigatus'' using chitosan as substrate  <cite>Cheng2006</cite>.
 
 
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Content is to be added here.
+
A site-directed mutagenesis study performed on the enzyme from ''Fusarium solani'' (expressed as a recombinant protein in ''Saccharomyces cerevisiae'') showed that Asp175 and Glu188 are essential for catalysis <cite>Shimosaka2005</cite>. This was confirmed by a study on the chitosanase from ''Aspergillus fumigatus'' (expressed as a recombinant protein in ''Escherichia coli'') showing that the corresponding residues Asp160 and Glu169 are essential for catalysis <cite>Cheng2006</cite>. Both residues are strictly conserved among eukaryotic and prokaryotic GH75 family members.
 
 
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Content is to be added here.
+
No three-dimensional structure has been solved for this family.
 
 
  
 
== Family Firsts ==
 
== Family Firsts ==
;First stereochemistry determination: Cite some reference here, with a ''short'' (1-2 sentence) explanation <cite>Comfort2007</cite>.
+
;First primary structure determination: Chitosanase from ''Fusarium solani'' f. sp. ''phaseoli'' <cite>Shimosaka1996</cite>.
;First catalytic nucleophile identification: Cite some reference here, with a ''short'' (1-2 sentence) explanation <cite>Sinnott1990</cite>.
+
;First stereochemistry determination: Chitosanase from ''Aspergillus fumigatus'' <cite>Cheng2006</cite>.
;First general acid/base residue identification: Cite some reference here, with a ''short'' (1-2 sentence) explanation <cite>He1999</cite>.
+
;First catalytic nucleophile identification: Not yet identified.
;First 3-D structure: Cite some reference here, with a ''short'' (1-2 sentence) explanation <cite>StickWilliams</cite>.
+
;First general acid/base residue identification: Not yet identified.
 +
;First 3-D structure: Not yet determined.
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Comfort2007 pmid=17323919
+
#Shimosaka1993 Shimosaka M, Nogawa M, Ohno Y, and Okazaki M. Chitosanase from the pathogenic fungus, ''Fusarium solani'' f.sp. ''phaseoli'' - purification and some properties. Biosci. Biotech. Biochem. 1993 57, 231-235.
#He1999 pmid=9312086
+
#Cheng2000 pmid=11115392
#StickWilliams isbn=978-0-240-52118-3
+
#Cheng2006 pmid=16330537
#Sinnott1990 Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. [http://dx.doi.org/10.1021/cr00105a006 DOI: 10.1021/cr00105a006]
+
#Shimosaka1996 Shimosaka M, Kumehara M, Zhang X-Y, Nogawa M, and Okazaki M. Cloning and characterization of a chitosanase gene from the plant pathogenic fungus Fusarium solani. J. Ferment. Bioeng. 1996 82, 426-431.
 +
#Shimosaka2005 pmid=16384794
 +
 
 +
 
 
</biblio>
 
</biblio>
  

Latest revision as of 13:16, 18 December 2021

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH75
Clan Not assigned
Mechanism Inverting
Active site residues Inferred
CAZy DB link
https://www.cazy.org/GH75.html


Substrate specificities

Glycoside hydrolases of family 75 include both eukaryotic (essentially fungal) and prokaryotic proteins. They have so far been characterized only from filamentous fungi. They are beta-1,4-chitosanases with endo-splitting activity [1, 2]. The analysis of the final product of hydrolysis of partially N-deacetylated chitosan by the GH75 chitosanase from Aspergillus fumigatus suggests that this enzyme cleaves preferentially GlcN-GlcN and GlcNAc-GlcN links in the polysaccharide chain [3].

Kinetics and Mechanism

Family GH46 enzymes are classified as inverting enzymes. This has been shown by 1H NMR for the enzyme from Aspergillus fumigatus using chitosan as substrate [3].

Catalytic Residues

A site-directed mutagenesis study performed on the enzyme from Fusarium solani (expressed as a recombinant protein in Saccharomyces cerevisiae) showed that Asp175 and Glu188 are essential for catalysis [4]. This was confirmed by a study on the chitosanase from Aspergillus fumigatus (expressed as a recombinant protein in Escherichia coli) showing that the corresponding residues Asp160 and Glu169 are essential for catalysis [3]. Both residues are strictly conserved among eukaryotic and prokaryotic GH75 family members.

Three-dimensional structures

No three-dimensional structure has been solved for this family.

Family Firsts

First primary structure determination
Chitosanase from Fusarium solani f. sp. phaseoli [5].
First stereochemistry determination
Chitosanase from Aspergillus fumigatus [3].
First catalytic nucleophile identification
Not yet identified.
First general acid/base residue identification
Not yet identified.
First 3-D structure
Not yet determined.

References

  1. Shimosaka M, Nogawa M, Ohno Y, and Okazaki M. Chitosanase from the pathogenic fungus, Fusarium solani f.sp. phaseoli - purification and some properties. Biosci. Biotech. Biochem. 1993 57, 231-235.

    [Shimosaka1993]
  2. Cheng CY and Li YK. (2000). An Aspergillus chitosanase with potential for large-scale preparation of chitosan oligosaccharides. Biotechnol Appl Biochem. 2000;32(3):197-203. DOI:10.1042/ba20000063 | PubMed ID:11115392 [Cheng2000]
  3. Cheng CY, Chang CH, Wu YJ, and Li YK. (2006). Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. J Biol Chem. 2006;281(6):3137-44. DOI:10.1074/jbc.M512506200 | PubMed ID:16330537 [Cheng2006]
  4. Shimosaka M, Sato K, Nishiwaki N, Miyazawa T, and Okazaki M. (2005). Analysis of essential carboxylic amino acid residues for catalytic activity of fungal chitosanases by site-directed mutagenesis. J Biosci Bioeng. 2005;100(5):545-50. DOI:10.1263/jbb.100.545 | PubMed ID:16384794 [Shimosaka2005]
  5. Shimosaka M, Kumehara M, Zhang X-Y, Nogawa M, and Okazaki M. Cloning and characterization of a chitosanase gene from the plant pathogenic fungus Fusarium solani. J. Ferment. Bioeng. 1996 82, 426-431.

    [Shimosaka1996]

All Medline abstracts: PubMed