CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Difference between revisions of "User:Darrell Cockburn"

From CAZypedia
Jump to navigation Jump to search
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Image:Darrell1.jpg|200px|right]]
 +
 +
Darrell Cockburn received his BSc. and PhD from the University of Guelph in Ontario, Canada. During his PhD under his adviser [[User:Anthony Clarke|Anthony Clarke]], Darrell primarily studied the structure function relationships within the endoglucanase family [[GH6]]. In 2010 Darrell moved to Denmark to take an H.C. Ørsted fellowship with [[User:Birte Svensson|Birte Svensson]] at the Technical University of Denmark. There he studied [[Surface Binding Site]]s in a variety of carbohydrate active enzymes, with a particular focus on [[GH13]]. In 2013 Darrell moved to the University of Michigan to continue his Postdoctoral training with Nicole Koropatkin, studying the amylolytic systems of the gut bacteria ''Eubacterium rectale'' and ''Ruminococcus bromii''. In 2017 Darrell started his own lab at Penn State University in the Department of Food Science, focusing on resistant starch degradation by the human gut microbiome.
 +
 +
----
 +
 +
<biblio>
  
 +
#Cockburn2018b pmid=29603462
  
[[Image:Darrell1.jpg|200px|right]]
+
#Cockburn2018a pmid=29159997
  
Darrell Cockburn received his BSc. and PhD from the University of Guelph in Ontario, Canada. During his PhD under his adviser Anthony Clarke, Darrell primarily studied the structure function relationships within the endoglucanase family [[GH6]]. In 2010 Darrell moved to Denmark to take an H.C. Ørsted fellowship with Birte Svensson at the Technical University of Denmark. There he studied surface binding sites in a variety of carbohydrate active enzymes, with a particular focus on [[GH13]]. In 2013 Darrell moved to the University of Michigan to continue his Postdoctoral training with Nicole Koropatkin, studying the amylolytic systems of the gut bacteria ''Eubacterium rectale'' and ''Ruminococcus bromii''.
+
#Cockburn2017b pmid=29139580
  
 +
#Cockburn2017a pmid=28417364
  
 +
#Cockburn2016e pmid=27555215
  
 +
#Cockburn2016d pmid=27393306
  
----
+
#Cockburn2016c pmid=27504624
  
<biblio>
+
#Cockburn2016b pmid=26946172
 +
#Cockburn2016a pmid=27137179
 +
#Cockburn2015 pmid=25661878
 +
#Cockburn2014b pmid=25388295
 +
#Cockburn2014 Cockburn, D., Wilkens, C., Ruzanski, C., Andersen, S., Willum Nielsen, J., Smith, A.M., Field, R.A., Willemoës, M., Abou Hachem, M., and Svensson B. (2014) Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review.  Biologia, 69, 705-712. [http://dx.doi.org/10.2478/s11756-014-0373-9 DOI: 10.2478/s11756-014-0373-9]
 +
#Cockburn2013 Cockburn, D. and Svensson, B. ''Surface binding sites in carbohydrate active enzymes: an emerging picture of structural and functional diversity''. 2013. In: Lindhorst TK, Rauter AP (eds) SPR carbohydrate chemistry—chemical and biological approaches, vol 39. Royal Society of Chemistry, Cambridge. [http://dx.doi.org/10.1039/9781849737173-00204 DOI: 10.1039/9781849737173-00204]
 
#Ruzakski2013 pmid=23950181
 
#Ruzakski2013 pmid=23950181
 +
#Moller2013 Møller, M.S., Cockburn, D., Nielsen, J.W., Jensen, J.M., Vester-Christensen, M.B., Nielsen, M.M., Andersen, J.M., Wilkens, C., Rannes, J., Hägglund, P., Henriksen, A., Abou Hachem, M., Willemoës M., and B. Svensson (2013) ''Surface Binding Sites (SBS), Mechanism and Regulation of 2 Enzymes Degrading Amylopectin and α-limit Dextrins.'' J. Appl. Glycosci. EPub March 21. [http://dx.doi.org/10.5458/jag.jag.JAG-2012_023 DOI: 10.5458/jag.jag.JAG-2012_023]
 +
#Diemer2012 Diemer, S.K., Svensson, B., Nygren Babol, L., Cockburn, D., Grijpstra, P., Dijkhuizen, L., Folkenberg, D.M., Garrigues, C., and R. Ipsen (2012) ''Binding interactions between α-glucans from Lactobacillus reuteri and milk proteins characterised by surface plasmon resonance.'' Food Biophys. 7: 220-226. [http://dx.doi.org/10.1007/s11483-012-9260-5 DOI: 10.1007/s11483-012-9260-5]
 +
 +
 
#Cockburn2011 pmid=21273341
 
#Cockburn2011 pmid=21273341
 
 
#Quirk2010 pmid=20170174
 
#Quirk2010 pmid=20170174
 
#Cockburn2010 pmid=20136145
 
#Cockburn2010 pmid=20136145

Latest revision as of 13:34, 18 December 2021

Darrell1.jpg

Darrell Cockburn received his BSc. and PhD from the University of Guelph in Ontario, Canada. During his PhD under his adviser Anthony Clarke, Darrell primarily studied the structure function relationships within the endoglucanase family GH6. In 2010 Darrell moved to Denmark to take an H.C. Ørsted fellowship with Birte Svensson at the Technical University of Denmark. There he studied Surface Binding Sites in a variety of carbohydrate active enzymes, with a particular focus on GH13. In 2013 Darrell moved to the University of Michigan to continue his Postdoctoral training with Nicole Koropatkin, studying the amylolytic systems of the gut bacteria Eubacterium rectale and Ruminococcus bromii. In 2017 Darrell started his own lab at Penn State University in the Department of Food Science, focusing on resistant starch degradation by the human gut microbiome.


Error fetching PMID 29603462:
Error fetching PMID 29159997:
Error fetching PMID 28417364:
Error fetching PMID 27555215:
Error fetching PMID 27393306:
Error fetching PMID 27504624:
Error fetching PMID 26946172:
Error fetching PMID 27137179:
Error fetching PMID 25661878:
Error fetching PMID 25388295:
  1. Error fetching PMID 29603462: [Cockburn2018b]
  2. Error fetching PMID 29159997: [Cockburn2018a]
  3. Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, and Koropatkin NM. (2018). Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol. 2018;107(2):249-264. DOI:10.1111/mmi.13881 | PubMed ID:29139580 [Cockburn2017b]
  4. Error fetching PMID 28417364: [Cockburn2017a]
  5. Error fetching PMID 27555215: [Cockburn2016e]
  6. Error fetching PMID 27393306: [Cockburn2016d]
  7. Error fetching PMID 27504624: [Cockburn2016c]
  8. Error fetching PMID 26946172: [Cockburn2016b]
  9. Error fetching PMID 27137179: [Cockburn2016a]
  10. Error fetching PMID 25661878: [Cockburn2015]
  11. Error fetching PMID 25388295: [Cockburn2014b]
  12. Cockburn, D., Wilkens, C., Ruzanski, C., Andersen, S., Willum Nielsen, J., Smith, A.M., Field, R.A., Willemoës, M., Abou Hachem, M., and Svensson B. (2014) Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review. Biologia, 69, 705-712. DOI: 10.2478/s11756-014-0373-9

    [Cockburn2014]
  13. Cockburn, D. and Svensson, B. Surface binding sites in carbohydrate active enzymes: an emerging picture of structural and functional diversity. 2013. In: Lindhorst TK, Rauter AP (eds) SPR carbohydrate chemistry—chemical and biological approaches, vol 39. Royal Society of Chemistry, Cambridge. DOI: 10.1039/9781849737173-00204

    [Cockburn2013]
  14. Ruzanski C, Smirnova J, Rejzek M, Cockburn D, Pedersen HL, Pike M, Willats WG, Svensson B, Steup M, Ebenhöh O, Smith AM, and Field RA. (2013). A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night. J Biol Chem. 2013;288(40):28581-98. DOI:10.1074/jbc.M113.497867 | PubMed ID:23950181 [Ruzakski2013]
  15. Møller, M.S., Cockburn, D., Nielsen, J.W., Jensen, J.M., Vester-Christensen, M.B., Nielsen, M.M., Andersen, J.M., Wilkens, C., Rannes, J., Hägglund, P., Henriksen, A., Abou Hachem, M., Willemoës M., and B. Svensson (2013) Surface Binding Sites (SBS), Mechanism and Regulation of 2 Enzymes Degrading Amylopectin and α-limit Dextrins. J. Appl. Glycosci. EPub March 21. DOI: 10.5458/jag.jag.JAG-2012_023

    [Moller2013]
  16. Diemer, S.K., Svensson, B., Nygren Babol, L., Cockburn, D., Grijpstra, P., Dijkhuizen, L., Folkenberg, D.M., Garrigues, C., and R. Ipsen (2012) Binding interactions between α-glucans from Lactobacillus reuteri and milk proteins characterised by surface plasmon resonance. Food Biophys. 7: 220-226. DOI: 10.1007/s11483-012-9260-5

    [Diemer2012]
  17. Cockburn DW and Clarke AJ. (2011). Modulating the pH-activity profile of cellulase A from Cellulomonas fimi by replacement of surface residues. Protein Eng Des Sel. 2011;24(5):429-37. DOI:10.1093/protein/gzr004 | PubMed ID:21273341 [Cockburn2011]
  18. Quirk A, Lipkowski J, Vandenende C, Cockburn D, Clarke AJ, Dutcher JR, and Roscoe SG. (2010). Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy. Langmuir. 2010;26(7):5007-13. DOI:10.1021/la9037028 | PubMed ID:20170174 [Quirk2010]
  19. Cockburn DW, Vandenende C, and Clarke AJ. (2010). Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi. Biochemistry. 2010;49(9):2042-50. DOI:10.1021/bi1000596 | PubMed ID:20136145 [Cockburn2010]
  20. Jing H, Cockburn D, Zhang Q, and Clarke AJ. (2009). Production and purification of the isolated family 2a carbohydrate-binding module from Cellulomonas fimi. Protein Expr Purif. 2009;64(1):63-8. DOI:10.1016/j.pep.2008.10.015 | PubMed ID:19017542 [Jing2009]
  21. Legaree BA, Daniels K, Weadge JT, Cockburn D, and Clarke AJ. (2007). Function of penicillin-binding protein 2 in viability and morphology of Pseudomonas aeruginosa. J Antimicrob Chemother. 2007;59(3):411-24. DOI:10.1093/jac/dkl536 | PubMed ID:17289762 [Legaree2007]

All Medline abstracts: PubMed