CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "User:Mariana Morais"

From CAZypedia
Jump to navigation Jump to search
(Created page with "200px|right '''This is an empty template to help you get started with composing your User page.''' You should begin by opening this page for ed...")
 
 
Line 1: Line 1:
[[Image:Blank_user-200px.png|200px|right]]
+
[[File:Picture mmorais.jpg|thumb]]
'''This is an empty template to help you get started with composing your User page.'''
 
  
You should begin by opening this page for editing by clicking on the Edit tab above. Your biography goes in this area of the page.
+
'''Mariana Abrahão Bueno de Morais''' is a researcher in the Brazilian Biorenewables National Laboratory [https://lnbr.cnpem.br/en/ (LNBR)] from the Brazilian Center for Research in Energy and Materials [https://cnpem.br/en/ (CNPEM)]. She has been focused on the elucidation of enzymes molecular mechanisms, integrating experimental data with computational approaches, including molecular modeling, classical and Quantum Mechanics simulations.
 +
She obtained a degree in Biotechnology Engineering at the São Paulo State University and her PhD (emphasis in Biochemistry) at the State University of Campinas, developing the project at CNPEM (Brazil) under the supervision of [[User:Mario_Murakami|Mario Murakami]], with a period at the IBMC/[https://www.i3s.up.pt/ I3S] Institute (Portugal) under the supervision of Prof. Ana Tomas. Mariana did a postdoc at the University of Barcelona in the group of Prof. Carme Rovira ([https://sites.google.com/site/roviralab/ QSBio]), working with hybrid QM/MM simulations.
  
* See [[User:Gerlind_Sulzenbacher]] for an example. You may copy text from this example by opening the page in another browser window and clicking the "Edit" tab.
+
<br>
* Add your publications in the list below using PubMed IDs and cite them in the text like this <cite>Gilbert2008</cite>.
+
Mariana has contributed to studies related to members of the following CAZy families: <br>
* Please upload a picture of yourself using the "Upload file" link in the Toolbox section of the left menu, and then replace the Image filename with your own.
+
'''[[Glycoside_Hydrolase_Family_1|GH1]]''' <cite>Santos2019,Sousa2020,Toyama2018</cite>, '''[[Glycoside_Hydrolase_Family_2|GH2]]''' <cite>Domingues2018</cite>, '''[[Glycoside_Hydrolase_Family_5|GH5]]''' subfamily 57 <cite>Martins2022</cite>, '''[[Glycoside_Hydrolase_Family_26|GH26]]''' <cite>Mandelli2020</cite>, '''[[Glycoside_Hydrolase_Family_38|GH38]]''' <cite>Cordeiro2023</cite>, '''[[Glycoside_Hydrolase_Family_39|GH39]]''' <cite>Morais2020</cite>, '''[[Glycoside_Hydrolase_Family_43|GH43]]''' <cite>Morais2021,Zanphorlin2019,Vieira2021</cite>, '''[[Glycoside_Hydrolase_Family_51|GH51]]''' <cite>Santos2018</cite>, '''[[Glycoside_Hydrolase_Family_173|GH173]]''' <cite>Cabral2022</cite>, '''[[Carbohydrate_Binding_Module_Family_3|CBM3]]''' <cite>Morais2023</cite>, '''[https://cazypedia.msl.ubc.ca/index.php/Carbohydrate_Binding_Module_Family_89 CBM89]''' <cite>Cabral2022</cite>.
  
''More specific help on these steps is available from the links under the "For contributors" section of the left page menu.''
+
 
 +
Structures on Protein Data Bank (PDB):
 +
<br>
 +
'''GH1''':
 +
PDB ID [https://www.rcsb.org/structure/6efu 6EFU] (ThBgl double mutant, a tailored beta-glucosidase from ''Trichoderma harzianum''); PDB ID [https://www.rcsb.org/structure/6WIU 6WIU] (EmBgl, a beta-glucosidase from the marine bacterium ''Exiguobacterium marinum''); PDB ID [https://www.rcsb.org/structure/5WKA 5WKA] (AmBgl-LP, a beta-glucosidase retrieved from microbial metagenome of Poraque Amazon lake). <br>
 +
'''GH2''':PDB ID [https://www.rcsb.org/structure/6BYC 6BYC] (XacMan2A, an exo-beta-mannanase from ''Xanthomonas axonopodis'' pv. citri); PDB ID [https://www.rcsb.org/structure/6BYE 6BYE] (XacMan2A, in complex with mannose); PDB ID [https://www.rcsb.org/structure/6BYG 6BYG] (XacMan2A, nucleophile mutant); PDB ID [https://www.rcsb.org/structure/6BYI 6BYI] (XacMan2A, acid/base mutant).<br>
 +
'''GH5''': PDB ID [https://www.rcsb.org/structure/8D89 8D89] (CapGH5_57, '''first structure of subfamily 57''', from an uncultured ''Bacteroidales bacterium'' recovered from the capybara gut microbiota). <br>
 +
'''GH26''':
 +
PDB ID [https://www.rcsb.org/structure/6UEH 6UEH] (Ruminal GH26 endo-beta-1,4-mannanase). <br>
 +
'''GH39''': PDB ID [https://www.rcsb.org/structure/6UQJ 6UQJ] (XacGH39, beta-xylasidase from ''Xanthomonas axonopodis'' pv. citri). <br>
 +
'''GH43''': PDB ID [https://www.rcsb.org/structure/6MS2 6MS2] (BlXynB, an inactive GH43 member from ''Bacillus licheniformis''); PDB ID [https://www.rcsb.org/structure/6MS3 6MS3 (Active BlXynB mutant (K247S)); PDB ID [https://www.rcsb.org/structure/6XN0 6XN0] (XacGH43_1, calcium activated exo-oligoxylanase from Xanthomonas citri); PDB ID [https://www.rcsb.org/structure/6XN1 6XN1] (XacGH43_1 complexed with xylose (Michaelis complex <cite>Morais2021</cite>)); PDB ID [https://www.rcsb.org/structure/6XN2 6XN2] (XacGH43_1 complexed with xylotriose); PDB ID [https://www.rcsb.org/structure/7JVH 7JVH] (GH43_12 retrieved from capybara gut metagenome). <br>
 +
'''GH51''': PDB ID [https://www.rcsb.org/structure/6D25 6D25] (XacAbf51, arabinofuranosidase that recognize arabinofuranosyl di-substitutions). <br>
 +
'''CBM3''': PDB ID [https://www.rcsb.org/structure/6UFV 6UFV] (BsCBM3, CBM3 from ''Bacillus subtilis'' at 1.28 angstrom resolution); PDB ID [https://www.rcsb.org/structure/6UFW 6UFW] (BsCBM3, CBM3 from ''Bacillus subtilis'' at 1.06 angstrom resolution). <br>
 +
'''CBM89''': PDB ID [https://www.rcsb.org/structure/7JVI 7JVI] (CapCBM89, '''first structure of CBM89 family''', retrieved from capybara gut metagenome).
 +
----
 +
 
 +
<biblio>
 +
#Santos2019 pmid=30894609
 +
#Sousa2020 <div>[https://doi.org/10.1002/bbb.2136 https://doi.org/10.1002/bbb.2136]</div>
 +
#Toyama2018 pmid=29454992
 +
#Domingues2018 pmid=29997257
 +
#Martins2022 pmid=36322419
 +
#Mandelli2020 pmid=32139511
 +
#Cordeiro2023 pmid=36443572
 +
#Morais2020 pmid=32500063
 +
#Morais2021 pmid=33446650
 +
#Zanphorlin2019 pmid=30556897
 +
#Santos2018 pmid=30127853
 +
#Cabral2022 pmid=35110564
 +
#Morais2023 pmid=36680939
 +
#Vieira2021 pmid=34193873
  
  
  
----
 
  
<biblio>
 
#Gilbert2008 pmid=18430603
 
  
 
</biblio>
 
</biblio>

Latest revision as of 12:00, 27 March 2023

Picture mmorais.jpg

Mariana Abrahão Bueno de Morais is a researcher in the Brazilian Biorenewables National Laboratory (LNBR) from the Brazilian Center for Research in Energy and Materials (CNPEM). She has been focused on the elucidation of enzymes molecular mechanisms, integrating experimental data with computational approaches, including molecular modeling, classical and Quantum Mechanics simulations. She obtained a degree in Biotechnology Engineering at the São Paulo State University and her PhD (emphasis in Biochemistry) at the State University of Campinas, developing the project at CNPEM (Brazil) under the supervision of Mario Murakami, with a period at the IBMC/I3S Institute (Portugal) under the supervision of Prof. Ana Tomas. Mariana did a postdoc at the University of Barcelona in the group of Prof. Carme Rovira (QSBio), working with hybrid QM/MM simulations.


Mariana has contributed to studies related to members of the following CAZy families:
GH1 [1, 2, 3], GH2 [4], GH5 subfamily 57 [5], GH26 [6], GH38 [7], GH39 [8], GH43 [9, 10, 11], GH51 [12], GH173 [13], CBM3 [14], CBM89 [13].


Structures on Protein Data Bank (PDB):
GH1: PDB ID 6EFU (ThBgl double mutant, a tailored beta-glucosidase from Trichoderma harzianum); PDB ID 6WIU (EmBgl, a beta-glucosidase from the marine bacterium Exiguobacterium marinum); PDB ID 5WKA (AmBgl-LP, a beta-glucosidase retrieved from microbial metagenome of Poraque Amazon lake).
GH2:PDB ID 6BYC (XacMan2A, an exo-beta-mannanase from Xanthomonas axonopodis pv. citri); PDB ID 6BYE (XacMan2A, in complex with mannose); PDB ID 6BYG (XacMan2A, nucleophile mutant); PDB ID 6BYI (XacMan2A, acid/base mutant).
GH5: PDB ID 8D89 (CapGH5_57, first structure of subfamily 57, from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota).
GH26: PDB ID 6UEH (Ruminal GH26 endo-beta-1,4-mannanase).
GH39: PDB ID 6UQJ (XacGH39, beta-xylasidase from Xanthomonas axonopodis pv. citri).
GH43: PDB ID 6MS2 (BlXynB, an inactive GH43 member from Bacillus licheniformis); PDB ID 6MS3 (Active BlXynB mutant (K247S)); PDB ID [https://www.rcsb.org/structure/6XN0 6XN0 (XacGH43_1, calcium activated exo-oligoxylanase from Xanthomonas citri); PDB ID 6XN1 (XacGH43_1 complexed with xylose (Michaelis complex [9])); PDB ID 6XN2 (XacGH43_1 complexed with xylotriose); PDB ID 7JVH (GH43_12 retrieved from capybara gut metagenome).
GH51: PDB ID 6D25 (XacAbf51, arabinofuranosidase that recognize arabinofuranosyl di-substitutions).
CBM3: PDB ID 6UFV (BsCBM3, CBM3 from Bacillus subtilis at 1.28 angstrom resolution); PDB ID 6UFW (BsCBM3, CBM3 from Bacillus subtilis at 1.06 angstrom resolution).
CBM89: PDB ID 7JVI (CapCBM89, first structure of CBM89 family, retrieved from capybara gut metagenome).


  1. Santos CA, Morais MAB, Terrett OM, Lyczakowski JJ, Zanphorlin LM, Ferreira-Filho JA, Tonoli CCC, Murakami MT, Dupree P, and Souza AP. (2019). An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci Rep. 2019;9(1):4903. DOI:10.1038/s41598-019-41300-3 | PubMed ID:30894609 [Santos2019]
  2. [Sousa2020]
  3. Toyama D, de Morais MAB, Ramos FC, Zanphorlin LM, Tonoli CCC, Balula AF, de Miranda FP, Almeida VM, Marana SR, Ruller R, Murakami MT, and Henrique-Silva F. (2018). A novel β-glucosidase isolated from the microbial metagenome of Lake Poraquê (Amazon, Brazil). Biochim Biophys Acta Proteins Proteom. 2018;1866(4):569-579. DOI:10.1016/j.bbapap.2018.02.001 | PubMed ID:29454992 [Toyama2018]
  4. Domingues MN, Souza FHM, Vieira PS, de Morais MAB, Zanphorlin LM, Dos Santos CR, Pirolla RAS, Honorato RV, de Oliveira PSL, Gozzo FC, and Murakami MT. (2018). Structural basis of exo-β-mannanase activity in the GH2 family. J Biol Chem. 2018;293(35):13636-13649. DOI:10.1074/jbc.RA118.002374 | PubMed ID:29997257 [Domingues2018]
  5. Martins MP, Morais MAB, Persinoti GF, Galinari RH, Yu L, Yoshimi Y, Passos Nunes FB, Lima TB, Barbieri SF, Silveira JLM, Lombard V, Terrapon N, Dupree P, Henrissat B, and Murakami MT. (2022). Glycoside hydrolase subfamily GH5_57 features a highly redesigned catalytic interface to process complex hetero-β-mannans. Acta Crystallogr D Struct Biol. 2022;78(Pt 11):1358-1372. DOI:10.1107/S2059798322009561 | PubMed ID:36322419 [Martins2022]
  6. Mandelli F, de Morais MAB, de Lima EA, Oliveira L, Persinoti GF, and Murakami MT. (2020). Spatially remote motifs cooperatively affect substrate preference of a ruminal GH26-type endo-β-1,4-mannanase. J Biol Chem. 2020;295(15):5012-5021. DOI:10.1074/jbc.RA120.012583 | PubMed ID:32139511 [Mandelli2020]
  7. Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, and Murakami MT. (2023). Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol. 2023;19(2):218-229. DOI:10.1038/s41589-022-01202-4 | PubMed ID:36443572 [Cordeiro2023]
  8. de Morais MAB, Polo CC, Domingues MN, Persinoti GF, Pirolla RAS, de Souza FHM, Correa JBL, Dos Santos CR, and Murakami MT. (2020). Exploring the Molecular Basis for Substrate Affinity and Structural Stability in Bacterial GH39 β-Xylosidases. Front Bioeng Biotechnol. 2020;8:419. DOI:10.3389/fbioe.2020.00419 | PubMed ID:32500063 [Morais2020]
  9. Morais MAB, Coines J, Domingues MN, Pirolla RAS, Tonoli CCC, Santos CR, Correa JBL, Gozzo FC, Rovira C, and Murakami MT. (2021). Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations. Nat Commun. 2021;12(1):367. DOI:10.1038/s41467-020-20620-3 | PubMed ID:33446650 [Morais2021]
  10. Zanphorlin LM, de Morais MAB, Diogo JA, Domingues MN, de Souza FHM, Ruller R, and Murakami MT. (2019). Structure-guided design combined with evolutionary diversity led to the discovery of the xylose-releasing exo-xylanase activity in the glycoside hydrolase family 43. Biotechnol Bioeng. 2019;116(4):734-744. DOI:10.1002/bit.26899 | PubMed ID:30556897 [Zanphorlin2019]
  11. Vieira PS, Bonfim IM, Araujo EA, Melo RR, Lima AR, Fessel MR, Paixão DAA, Persinoti GF, Rocco SA, Lima TB, Pirolla RAS, Morais MAB, Correa JBL, Zanphorlin LM, Diogo JA, Lima EA, Grandis A, Buckeridge MS, Gozzo FC, Benedetti CE, Polikarpov I, Giuseppe PO, and Murakami MT. (2021). Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun. 2021;12(1):4049. DOI:10.1038/s41467-021-24277-4 | PubMed ID:34193873 [Vieira2021]
  12. Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Büchli F, de Oliveira PSL, Gozzo FC, and Murakami MT. (2018). The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. Biotechnol Biofuels. 2018;11:223. DOI:10.1186/s13068-018-1212-y | PubMed ID:30127853 [Santos2018]
  13. Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, and Murakami MT. (2022). Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun. 2022;13(1):629. DOI:10.1038/s41467-022-28310-y | PubMed ID:35110564 [Cabral2022]
  14. Morais MAB, Paiva JH, and Murakami MT. (2023). Molecular plasticity of CBM3 ancillary domain leads to conformational changes in the cellulose binding interface. Biochem Biophys Res Commun. 2023;645:71-78. DOI:10.1016/j.bbrc.2023.01.020 | PubMed ID:36680939 [Morais2023]

All Medline abstracts: PubMed