CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Takatsugu Miyazaki"
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | [[Image: | + | [[Image:Takatsugu_Miyazaki.png|right]] |
− | Takatsugu Miyazaki is an | + | Takatsugu Miyazaki is an Associate Professor of [https://green.shizuoka.ac.jp/en/ Research Institute of Green Science and Technology] (RIGST) and [https://www.agr.shizuoka.ac.jp/en/ Department of Agriculture, Graduate School of Integrated Science and Technology], at [https://www.shizuoka.ac.jp/english/ Shizuoka University]. He obtained his PhD under the supervision of [[User:Takashi Tonozuka|Takashi Tonozuka]] at Tokyo University of Agriculture and Technology. He is interested in structures and functions of CAZymes, especially glycoside hydrolases and glycosyltransferases from microorganisms and insects. He has contributed to the crystal structure determination of |
− | *[[GH6]] ''Coprinopsis cinerea'' cellobiohydrolase CcCel6C | + | *[[GH6]] ''Coprinopsis cinerea'' cellobiohydrolase CcCel6C <cite>Liu2010</cite> |
− | *[[GH6]] ''Coprinopsis cinerea'' cellobiohydrolase CcCel6A | + | *[[GH6]] ''Coprinopsis cinerea'' cellobiohydrolase CcCel6A <cite>Tamura2012</cite> |
− | *[[GH13]]_17 ''Bombyx mori'' sucrose hydrolase BmSUH | + | *[[GH13]]_17 ''Bombyx mori'' sucrose hydrolase BmSUH <cite>Miyazaki2020a</cite> |
− | *[[GH16]] ''Microbulbifer thermotolerans'' β-agarase | + | *[[GH16]]_16 ''Microbulbifer thermotolerans'' β-agarase <cite>Takagi2015</cite> |
− | *[[GH27]] ''Arthrobacter globiformis'' isomalto-dextranase | + | *[[GH27]] ''Arthrobacter globiformis'' isomalto-dextranase <cite>Okazawa2015</cite> |
− | *[[GH31]] ''Pseudopedobacter saltans'' α-galactosidase | + | *[[GH31]]_14 ''Pseudopedobacter saltans'' α-galactosidase '''Subfamily First''' <cite>Miyazaki2015a</cite> |
− | *[[GH31]] ''Enterococcus faecalis'' exo-acting protein-α-''N''-acetylgalactosaminidase | + | *[[GH31]]_15 ''Lactococcus lactis'' subsp. ''cremoris'' α-1,3-glucosidase '''Subfamily First''' <cite>Ikegaya2022</cite> |
− | *[[GH31]] '' | + | *[[GH31]]_18 ''Enterococcus faecalis'' exo-acting protein-α-''N''-acetylgalactosaminidase '''Subfamily First''' <cite>Miyazaki2020b Miyazaki2022a</cite> |
− | *[[GH32]] ''Bombyx mori'' β-fructofuranosidase BmSUC1 | + | *[[GH31]]_19 ''Bacteroides salyersiae'' and ''Flavihumibacter petaseus'' α-1,4-galactosidases '''Subfamily First''' <cite>Ikegaya2023</cite> |
− | *[[GH49]] ''Aspergillus brasiliensis'' isopullulanase (''N''-glycan-deficient variant) | + | *[[GH32]] ''Bombyx mori'' β-fructofuranosidase BmSUC1 <cite>Miyazaki2020c</cite> |
− | *[[GH62]] ''Coprinopsis cinerea'' α-L-arabinofuranosidase CcAbf62A | + | *[[GH49]] ''Aspergillus brasiliensis'' isopullulanase (''N''-glycan-deficient variant) <cite>Miyazaki2015b</cite> |
− | *[[GH63]] ''Escherichia coli'' α-glycosidase YgjK (glycosynthase mutant) | + | *[[GH62]] ''Coprinopsis cinerea'' α-L-arabinofuranosidase CcAbf62A <cite>Tonozuka2017</cite> |
− | *[[GH63]] ''Thermus thermophillus'' mannosylglycerate hydrolase | + | *[[GH63]] ''Escherichia coli'' α-glycosidase YgjK (glycosynthase mutant) <cite>Miyazaki2013a Miyazaki2016</cite> |
− | *[[GH65]] ''Flavobacterium johnsoniae'' kojibiose hydrolase | + | *[[GH63]] ''Thermus thermophillus'' mannosylglycerate hydrolase <cite>Miyazaki2015c</cite> |
− | *[[GH68]] ''Microbacterium saccharophilum'' β-fructofuranosidase and its thermostabilized mutants | + | *[[GH65]] ''Flavobacterium johnsoniae'' kojibiose hydrolase <cite>Nakamura2021 Nakamura2023</cite> |
− | *[[GH92]] ''Enterococcus faecalis'' α-1,2-mannosidase (Michaelis complex) | + | *[[GH66]] ''Flavobacterium johnsoniae'' dextranase <cite>Nakamura2023</cite> |
− | *[[GH131]] ''Coprinopsis cinerea'' CcGH131A | + | *[[GH68]] ''Microbacterium saccharophilum'' β-fructofuranosidase <cite>Tonozuka2012</cite> and its thermostabilized mutants <cite>Ohta2014</cite> |
+ | *[[GH92]] ''Enterococcus faecalis'' α-1,2-mannosidase (Michaelis complex) <cite>Alonso-Gil2022</cite> | ||
+ | *[[GH97]] ''Flavobacterium johnsoniae'' glucodextranase <cite>Nakamura2024</cite> | ||
+ | *[[GH131]] ''Coprinopsis cinerea'' CcGH131A '''Family First''' <cite>Miyazaki2013b</cite> | ||
− | *[[CBM94]] C-terminal domains of ''Homo sapiens'' [[GT54]] ''N''-acetylglucosaminyltransferase IVa (GnT-IVa, MGAT4A) and ''Bombyx mori'' ortholog | + | *[[CBM94]] C-terminal domains of ''Homo sapiens'' [[GT54]] ''N''-acetylglucosaminyltransferase IVa (GnT-IVa, MGAT4A) and ''Bombyx mori'' ortholog '''Family First''' <cite>Oka2022</cite> |
He also has contributed to identification and characterization of | He also has contributed to identification and characterization of | ||
− | *[[GH29]] ''Bombyx mori'' α-L-fucosidase | + | *[[GH29]] ''Bombyx mori'' α-L-fucosidase <cite>Nakamura2020</cite> |
− | + | *[[GH31]] ''Flavobacterium johnsoniae'' dextranase <cite>Gozu2016 Nakamura2023</cite> | |
− | *[[GH31]] ''Flavobacterium johnsoniae'' dextranase | + | *[[GH31]]_10 ''Paenibacillus'' sp. 598K 6-α-glucosyltransferase <cite>Ichinose2017</cite> |
− | *[[GH31]] ''Paenibacillus'' sp. 598K 6-α-glucosyltransferase | + | *[[GH31]]_14 ''Pedobacter heparinus'' α-galactosidase <cite>Miyazaki2015a</cite> |
− | *[[GH31]] '' | + | *[[GH31]]_15 ''Cordyceps militaris'' α-1,3-glucosidase <cite>Ikegaya2022</cite> |
− | *[[GH31]] ''Cordyceps militaris'' α-1,3-glucosidase | + | *[[GH31]]_18 ''Bombyx mori'' exo-acting protein-α-''N''-acetylgalactosaminidase <cite>Ikegaya2021</cite> |
− | *[[GH63]] ''Aspergillus brasiliensis'' | + | *[[GH63]] ''Aspergillus brasiliensis'' mannosyl-oligosaccharide glucosidase <cite>Miyazaki2011</cite> |
− | *[[GH65]] ''Microbacterium dextranolyticum'' dextran α-1,2-debranching enzyme | + | *[[GH65]] ''Microbacterium dextranolyticum'' dextran α-1,2-debranching enzyme <cite>Miyazaki2022b</cite> |
− | *[[GH66]] ''Paenibacillus'' sp. 598K dextranase | + | *[[GH66]] ''Paenibacillus'' sp. 598K dextranase <cite>Mizushima2019</cite> |
− | *[[GH99]] ''Shewanella amazonensis'' endo-α-1,2-mannosidase | + | *[[GH99]] ''Shewanella amazonensis'' endo-α-1,2-mannosidase <cite>Matsuda2011</cite> |
− | *[[GT7]] ''Bombyx mori'' β-1,4-''N''-acetylgalactosaminyltransferase | + | *[[GT7]] ''Bombyx mori'' β-1,4-''N''-acetylgalactosaminyltransferase <cite>Miyazaki2019a</cite> |
− | |||
− | |||
− | *[[ | + | *[[GT16]] ''Homo sapiens'' β-1,2-''N''-acetylglucosaminyltransferase II recombinantly expressed in ''Bombyx mori'' <cite>Miyazaki2018</cite> |
+ | *[[GT16]] ''Bombyx mori'' β-1,2-''N''-acetylglucosaminyltransferase II <cite>Miyazaki2019b</cite> | ||
+ | *[[PL21]] ''Pedobacter heparinus'' heparin lyase II (mutants) <cite>Mori2016</cite> | ||
---- | ---- | ||
Line 52: | Line 55: | ||
#Miyazaki2015a pmid=25942325 | #Miyazaki2015a pmid=25942325 | ||
#Miyazaki2020b pmid=32367553 | #Miyazaki2020b pmid=32367553 | ||
− | # | + | #Miyazaki2022a pmid=34826537 |
#Ikegaya2022 pmid=35293315 | #Ikegaya2022 pmid=35293315 | ||
− | # | + | #Miyazaki2020c pmid=33132139 |
#Miyazaki2015b pmid=25359784 | #Miyazaki2015b pmid=25359784 | ||
#Tonozuka2017 pmid=27589854 | #Tonozuka2017 pmid=27589854 | ||
Line 62: | Line 65: | ||
#Nakamura2021 pmid=34728215 | #Nakamura2021 pmid=34728215 | ||
#Tonozuka2012 pmid=23040392 | #Tonozuka2012 pmid=23040392 | ||
+ | #Ohta2014 pmid=24633372 | ||
#Alonso-Gil2022 pmid=35049087 | #Alonso-Gil2022 pmid=35049087 | ||
#Miyazaki2013b pmid=23711369 | #Miyazaki2013b pmid=23711369 | ||
Line 70: | Line 74: | ||
#Ikegaya2021 pmid=33742736 | #Ikegaya2021 pmid=33742736 | ||
#Miyazaki2011 pmid=22020441 | #Miyazaki2011 pmid=22020441 | ||
+ | #Miyazaki2022b pmid=37033117 | ||
#Mizushima2019 pmid=31273396 | #Mizushima2019 pmid=31273396 | ||
#Matsuda2011 pmid=21512220 | #Matsuda2011 pmid=21512220 | ||
Line 76: | Line 81: | ||
#Miyazaki2019b pmid=30253927 | #Miyazaki2019b pmid=30253927 | ||
#Mori2016 pmid=34354475 | #Mori2016 pmid=34354475 | ||
− | + | #Nakamura2023 pmid=37269952 | |
+ | #Ikegaya2023 pmid=37438884 | ||
+ | #Nakamura2024 pmid=38661728 | ||
</biblio> | </biblio> | ||
<!-- Do not remove this Category tag --> | <!-- Do not remove this Category tag --> | ||
[[Category:Contributors|Miyazaki,Takatsugu]] | [[Category:Contributors|Miyazaki,Takatsugu]] |
Latest revision as of 23:37, 27 April 2024
Takatsugu Miyazaki is an Associate Professor of Research Institute of Green Science and Technology (RIGST) and Department of Agriculture, Graduate School of Integrated Science and Technology, at Shizuoka University. He obtained his PhD under the supervision of Takashi Tonozuka at Tokyo University of Agriculture and Technology. He is interested in structures and functions of CAZymes, especially glycoside hydrolases and glycosyltransferases from microorganisms and insects. He has contributed to the crystal structure determination of
- GH6 Coprinopsis cinerea cellobiohydrolase CcCel6C [1]
- GH6 Coprinopsis cinerea cellobiohydrolase CcCel6A [2]
- GH13_17 Bombyx mori sucrose hydrolase BmSUH [3]
- GH16_16 Microbulbifer thermotolerans β-agarase [4]
- GH27 Arthrobacter globiformis isomalto-dextranase [5]
- GH31_14 Pseudopedobacter saltans α-galactosidase Subfamily First [6]
- GH31_15 Lactococcus lactis subsp. cremoris α-1,3-glucosidase Subfamily First [7]
- GH31_18 Enterococcus faecalis exo-acting protein-α-N-acetylgalactosaminidase Subfamily First [8, 9]
- GH31_19 Bacteroides salyersiae and Flavihumibacter petaseus α-1,4-galactosidases Subfamily First [10]
- GH32 Bombyx mori β-fructofuranosidase BmSUC1 [11]
- GH49 Aspergillus brasiliensis isopullulanase (N-glycan-deficient variant) [12]
- GH62 Coprinopsis cinerea α-L-arabinofuranosidase CcAbf62A [13]
- GH63 Escherichia coli α-glycosidase YgjK (glycosynthase mutant) [14, 15]
- GH63 Thermus thermophillus mannosylglycerate hydrolase [16]
- GH65 Flavobacterium johnsoniae kojibiose hydrolase [17, 18]
- GH66 Flavobacterium johnsoniae dextranase [18]
- GH68 Microbacterium saccharophilum β-fructofuranosidase [19] and its thermostabilized mutants [20]
- GH92 Enterococcus faecalis α-1,2-mannosidase (Michaelis complex) [21]
- GH97 Flavobacterium johnsoniae glucodextranase [22]
- GH131 Coprinopsis cinerea CcGH131A Family First [23]
- CBM94 C-terminal domains of Homo sapiens GT54 N-acetylglucosaminyltransferase IVa (GnT-IVa, MGAT4A) and Bombyx mori ortholog Family First [24]
He also has contributed to identification and characterization of
- GH29 Bombyx mori α-L-fucosidase [25]
- GH31 Flavobacterium johnsoniae dextranase [18, 26]
- GH31_10 Paenibacillus sp. 598K 6-α-glucosyltransferase [27]
- GH31_14 Pedobacter heparinus α-galactosidase [6]
- GH31_15 Cordyceps militaris α-1,3-glucosidase [7]
- GH31_18 Bombyx mori exo-acting protein-α-N-acetylgalactosaminidase [28]
- GH63 Aspergillus brasiliensis mannosyl-oligosaccharide glucosidase [29]
- GH65 Microbacterium dextranolyticum dextran α-1,2-debranching enzyme [30]
- GH66 Paenibacillus sp. 598K dextranase [31]
- GH99 Shewanella amazonensis endo-α-1,2-mannosidase [32]
- GT16 Homo sapiens β-1,2-N-acetylglucosaminyltransferase II recombinantly expressed in Bombyx mori [34]
- GT16 Bombyx mori β-1,2-N-acetylglucosaminyltransferase II [35]
- Liu Y, Yoshida M, Kurakata Y, Miyazaki T, Igarashi K, Samejima M, Fukuda K, Nishikawa A, and Tonozuka T. (2010). Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. FEBS J. 2010;277(6):1532-42. DOI:10.1111/j.1742-4658.2010.07582.x |
- Tamura M, Miyazaki T, Tanaka Y, Yoshida M, Nishikawa A, and Tonozuka T. (2012). Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea--a tweezer-like motion in the structure of CcCel6C. FEBS J. 2012;279(10):1871-82. DOI:10.1111/j.1742-4658.2012.08568.x |
- Miyazaki T and Park EY. (2020). Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases. J Biol Chem. 2020;295(26):8784-8797. DOI:10.1074/jbc.RA120.013595 |
- Takagi E, Hatada Y, Akita M, Ohta Y, Yokoi G, Miyazaki T, Nishikawa A, and Tonozuka T. (2015). Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94. Biosci Biotechnol Biochem. 2015;79(4):625-32. DOI:10.1080/09168451.2014.988680 |
- Okazawa Y, Miyazaki T, Yokoi G, Ishizaki Y, Nishikawa A, and Tonozuka T. (2015). Crystal Structure and Mutational Analysis of Isomalto-dextranase, a Member of Glycoside Hydrolase Family 27. J Biol Chem. 2015;290(43):26339-49. DOI:10.1074/jbc.M115.680942 |
- Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, and Tonozuka T. (2015). Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469(1):145-58. DOI:10.1042/BJ20150261 |
- Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, and Miyazaki T. (2022). Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. J Biol Chem. 2022;298(5):101827. DOI:10.1016/j.jbc.2022.101827 |
- Miyazaki T and Park EY. (2020). Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett. 2020;594(14):2282-2293. DOI:10.1002/1873-3468.13804 |
- Miyazaki T, Ikegaya M, and Alonso-Gil S. (2022). Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase. Biochimie. 2022;195:90-99. DOI:10.1016/j.biochi.2021.11.007 |
- Ikegaya M, Park EY, and Miyazaki T. (2023). Structure-function analysis of bacterial GH31 α-galactosidases specific for α-(1→4)-galactobiose. FEBS J. 2023;290(20):4984-4998. DOI:10.1111/febs.16904 |
- Miyazaki T, Oba N, and Park EY. (2020). Structural insight into the substrate specificity of Bombyx mori β-fructofuranosidase belonging to the glycoside hydrolase family 32. Insect Biochem Mol Biol. 2020;127:103494. DOI:10.1016/j.ibmb.2020.103494 |
- Miyazaki T, Yashiro H, Nishikawa A, and Tonozuka T. (2015). The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. J Biochem. 2015;157(4):225-34. DOI:10.1093/jb/mvu065 |
- Tonozuka T, Tanaka Y, Okuyama S, Miyazaki T, Nishikawa A, and Yoshida M. (2017). Structure of the Catalytic Domain of α-L-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure-Function Relationships in Glycoside Hydrolase Family 62. Appl Biochem Biotechnol. 2017;181(2):511-525. DOI:10.1007/s12010-016-2227-0 |
- Miyazaki T, Ichikawa M, Yokoi G, Kitaoka M, Mori H, Kitano Y, Nishikawa A, and Tonozuka T. (2013). Structure of a bacterial glycoside hydrolase family 63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. FEBS J. 2013;280(18):4560-71. DOI:10.1111/febs.12424 |
- Miyazaki T, Nishikawa A, and Tonozuka T. (2016). Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. J Struct Biol. 2016;196(3):479-486. DOI:10.1016/j.jsb.2016.09.015 |
- Miyazaki T, Ichikawa M, Iino H, Nishikawa A, and Tonozuka T. (2015). Crystal structure and substrate-binding mode of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8. J Struct Biol. 2015;190(1):21-30. DOI:10.1016/j.jsb.2015.02.006 |
- Nakamura S, Nihira T, Kurata R, Nakai H, Funane K, Park EY, and Miyazaki T. (2021). Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. J Biol Chem. 2021;297(6):101366. DOI:10.1016/j.jbc.2021.101366 |
- Nakamura S, Kurata R, Tonozuka T, Funane K, Park EY, and Miyazaki T. (2023). Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. J Biol Chem. 2023;299(7):104885. DOI:10.1016/j.jbc.2023.104885 |
- Tonozuka T, Tamaki A, Yokoi G, Miyazaki T, Ichikawa M, Nishikawa A, Ohta Y, Hidaka Y, Katayama K, Hatada Y, Ito T, and Fujita K. (2012). Crystal structure of a lactosucrose-producing enzyme, Arthrobacter sp. K-1 β-fructofuranosidase. Enzyme Microb Technol. 2012;51(6-7):359-65. DOI:10.1016/j.enzmictec.2012.08.004 |
- Ohta Y, Hatada Y, Hidaka Y, Shimane Y, Usui K, Ito T, Fujita K, Yokoi G, Mori M, Sato S, Miyazaki T, Nishikawa A, and Tonozuka T. (2014). Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol. 2014;98(15):6667-77. DOI:10.1007/s00253-014-5645-3 |
- Alonso-Gil S, Parkan K, Kaminský J, Pohl R, and Miyazaki T. (2022). Unlocking the Hydrolytic Mechanism of GH92 α-1,2-Mannosidases: Computation Inspires the use of C-Glycosides as Michaelis Complex Mimics. Chemistry. 2022;28(14):e202200148. DOI:10.1002/chem.202200148 |
- Nakamura S, Kurata R, and Miyazaki T. (2024). Structural insights into α-(1→6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. FEBS J. 2024;291(14):3267-3282. DOI:10.1111/febs.17139 |
- Miyazaki T, Yoshida M, Tamura M, Tanaka Y, Umezawa K, Nishikawa A, and Tonozuka T. (2013). Crystal structure of the N-terminal domain of a glycoside hydrolase family 131 protein from Coprinopsis cinerea. FEBS Lett. 2013;587(14):2193-8. DOI:10.1016/j.febslet.2013.05.041 |
- Oka N, Mori S, Ikegaya M, Park EY, and Miyazaki T. (2022). Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology. 2022;32(12):1153-1163. DOI:10.1093/glycob/cwac058 |
- Nakamura S, Miyazaki T, and Park EY. (2020). α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans. Insect Biochem Mol Biol. 2020;124:103427. DOI:10.1016/j.ibmb.2020.103427 |
- Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, and Tonozuka T. (2016). A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem. 2016;80(8):1562-7. DOI:10.1080/09168451.2016.1182852 |
- Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, Fujimoto Z, Kimura A, and Funane K. (2017). Paenibacillus sp. 598K 6-α-glucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from α-(1 → 4)-glucan. Appl Microbiol Biotechnol. 2017;101(10):4115-4128. DOI:10.1007/s00253-017-8174-z |
- Ikegaya M, Miyazaki T, and Park EY. (2021). Biochemical characterization of Bombyx mori α-N-acetylgalactosaminidase belonging to the glycoside hydrolase family 31. Insect Mol Biol. 2021;30(4):367-378. DOI:10.1111/imb.12701 |
- Miyazaki T, Matsumoto Y, Matsuda K, Kurakata Y, Matsuo I, Ito Y, Nishikawa A, and Tonozuka T. (2011). Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642. Glycoconj J. 2011;28(8-9):563-71. DOI:10.1007/s10719-011-9356-z |
- Miyazaki T, Tanaka H, Nakamura S, Dohra H, and Funane K. (2023). Identification and Characterization of Dextran α-1,2-Debranching Enzyme from Microbacterium dextranolyticum. J Appl Glycosci (1999). 2023;70(1):15-24. DOI:10.5458/jag.jag.JAG-2022_0013 |
- Mizushima D, Miyazaki T, Shiwa Y, Kimura K, Suzuki S, Fujita N, Yoshikawa H, Kimura A, Kitamura S, Hara H, and Funane K. (2019). A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides. Appl Microbiol Biotechnol. 2019;103(16):6581-6592. DOI:10.1007/s00253-019-09965-y |
- Matsuda K, Kurakata Y, Miyazaki T, Matsuo I, Ito Y, Nishikawa A, and Tonozuka T. (2011). Heterologous expression, purification, and characterization of an α-mannosidase belonging to glycoside hydrolase family 99 of Shewanella amazonensis. Biosci Biotechnol Biochem. 2011;75(4):797-9. DOI:10.1271/bbb.100874 |
- Miyazaki T, Miyashita R, Nakamura S, Ikegaya M, Kato T, and Park EY. (2019). Biochemical characterization and mutational analysis of silkworm Bombyx mori β-1,4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1,4-galactosyltransferase family enzymes. Insect Biochem Mol Biol. 2019;115:103254. DOI:10.1016/j.ibmb.2019.103254 |
- Miyazaki T, Kato T, and Park EY. (2018). Heterologous expression, purification and characterization of human β-1,2-N-acetylglucosaminyltransferase II using a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system. J Biosci Bioeng. 2018;126(1):15-22. DOI:10.1016/j.jbiosc.2018.01.011 |
- Miyazaki T, Miyashita R, Mori S, Kato T, and Park EY. (2019). Expression and characterization of silkworm Bombyx mori β-1,2-N-acetylglucosaminyltransferase II, a key enzyme for complex-type N-glycan biosynthesis. J Biosci Bioeng. 2019;127(3):273-280. DOI:10.1016/j.jbiosc.2018.08.014 |
- Mori M, Ichikawa M, Kiguchi Y, Miyazaki T, Hattori M, Nishikawa A, and Tonozuka T. (2016). A Surface Loop in the N-Terminal Domain of Pedobacter heparinus Heparin Lyase II is Important for Activity. J Appl Glycosci (1999). 2016;63(1):7-11. DOI:10.5458/jag.jag.JAG-2015_019 |