CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
 
(132 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''19 June 2020:''' ''Three additional alginate lyase families!'' The number of PL family pages in ''CAZypedia'' continues to grow with the promotion of the '''[[Polysaccharide Lyase Family 6]]''', '''[[Polysaccharide Lyase Family 15]]''', and '''[[Polysaccharide Lyase Family 17]]''' pages to [[Curator Approved]] status today.  We thank '''[[User:Emil Stender|Emil G.P. Stender]]''' for his hard work in tackling this trifecta of bacterial alginate lyase families (including some heparin/heparan sulfate lyases from the human gut microbiota in '''[[PL15]]'''), which were vetted [[Responsible Curator]] '''[[User:Birte Svensson|Birte Svensson]]'''. ''Dig into the details of these families on their corresponding pages, in comparison with the recently completed '''[[PL7]]''' page (see previous news item below): '''[[PL6]]''', '''[[PL15]]''', '''[[PL17]]'''.''  
+
'''25 October 2024:''' ''Laminariawesome!'' Check out two new marine families of CBMs, '''[[CBM102]]''' and '''[[CBM103]]''', now on ''CAZypedia'' which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms.  Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate.  Both pages were [[author]]ed by '''[[User:Marie-Katherin Zuehlke|Marie-Katherin Zühlke]]'''. ''Read up on these environmentally important CBMs on their respective [[CBM102]] and [[CBM103]] pages!''  
 
----
 
----
'''17 June 2020:''' ''PLs from the sea.'' The '''[[Polysaccharide Lyase Family 7]]''' page, which was written by '''[[User:Nadine Gerlach|Nadine Gerlach]]''', was promoted to completed by [[Curator Approved]] status today by '''[[User:Jan-Hendrik Hehemann|Jan-Hendrik Hehemann]]'''.  The founding member of '''[[PL7]]''', an alginate lyase, was characterized way back in 1993 by a team notably including CAZypedian [[User:Gurvan Michel|Gurvan Michel]]. Alginate is heteropolysaccharide from brown algae and mucoid bacteria, consisting of beta-{{Smallcaps|d}}-mannuronate (M) and alpha-{{Smallcaps|l}}-guluronate (G) residues in varying ratios and intra-chain distributions, depending on the sourceAs a result, '''[[PL7]]''' members exhibit mannuronate, guluronate, or mixed link specificity''Read more about the deep history of enzymolgoy and structural biology of PL7 [[Polysaccharide Lyase Family 7|here]], including seminal work by '''[[User:Jan-Hendrik Hehemann|Jan-Hendrik]]''' showing the horizontal gene transfer of these enzymes into the human gut microbiota and other marine bacteria.''  
+
'''19 July 2024:''' ''Chalk-up one more for the GTs!'' The '''[[Glycosyltransferase Family 47]]''' page joined the small group of [[Curator Approved]] [[Glycosyltransferase Families]] pages in ''CAZypedia'' today. This entry was [[author]]ed by Ph.D. students '''[[User:Daniel Tehrani|Daniel Tehrani]]''' and '''[[User:Charlie Corulli|Charlie Corulli]]''', and [[Responsible Curator|Curated]] by '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' with input from '''[https://ccrc.uga.edu/team/kelley-moremen/ Kelley Moremen]'''Widely represented in plants, '''[[GT47]]''' members are anomer-[[inverting]] [[glycosyltransferases]], which are involved in the biosynthesis of several cell wall matrix polysaccharides.  Representatives from mammals are involved in heparin biosynthesisCorrespondingly, members of [[GH47]] have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides.  ''This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!''
 
----
 
----
'''16 June 2020:''' ''From rotting plants to vegetable digestion in the gut.'' The '''[[Polysaccharide Lyase Family 9]]''' page was completed by '''[[User:Ana Luis|Ana Luis]]''' and upgraded to [[Curator Approved]] status today by '''[[User:Wade Abbott|Wade Abbott]]'''. '''[[PL9]]'''  was originally identified and characterized as part of the pectin-degrading machinery from the plant pathogenic bacterium [https://en.wikipedia.org/wiki/Dickeya_dadantii ''Dickeya dadantii''] (''Erwinia chrysanthemi''), including seminal structural work by [[User:Richard Pickersgill|Richard Pickersgill]] and colleagues. More recently '''[[User:Ana Luis|Ana]]''' and '''[[User:Wade Abbott|Wade]]''', as part of a big team involving other CAZypedians [[User:Jonathon Briggs|Jonathon Briggs]], [[User:Didier Ndeh|Didier Ndeh]], [[User:Alan Cartmell|Alan Cartmell]], [[User:Bernard Henrissat|Bernard Henrissat]], and [[User:Harry Gilbert|Harry Gilbert]], shed new light on the role of '''[[PL9]]''' members in the human gut microbiota. ''Take some time to learn more about the long and rich history of '''[[Polysaccharide Lyase Family 9]]!'''''
+
'''9 July 2024:''' ''Yet another new family of beta-1,2-glucan-active enzymes!'' Today, '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 186]]''' page by '''[[User:Sei Motouchi|Sei Motouchi]]'''. '''[[GH186]]''' is a family of anomer-[[inverting]] enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some [[GH186]] members work as classic [[glycoside hydrolases]], others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack.  Also notable, [[GH186]] members appear to use an extended chain of water molecules to relay acceptor deprotonation by the [[general base]] residue, ''i.e.'' a [https://en.wikipedia.org/wiki/Grotthuss_mechanism Grotthuss mechanism]. ''Check out the '''[[GH186]]''' page to learn more about these interesting enzymes, and make sure to see the [[GH189]], [[GH144]], and [[GH162]] pages from this same group.''
 +
 
 +
----
 +
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.
 
----
 
----

Latest revision as of 05:59, 31 October 2024

25 October 2024: Laminariawesome! Check out two new marine families of CBMs, CBM102 and CBM103, now on CAZypedia which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms. Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate. Both pages were authored by Marie-Katherin Zühlke. Read up on these environmentally important CBMs on their respective CBM102 and CBM103 pages!


19 July 2024: Chalk-up one more for the GTs! The Glycosyltransferase Family 47 page joined the small group of Curator Approved Glycosyltransferase Families pages in CAZypedia today. This entry was authored by Ph.D. students Daniel Tehrani and Charlie Corulli, and Curated by Breeanna Urbanowicz with input from Kelley Moremen. Widely represented in plants, GT47 members are anomer-inverting glycosyltransferases, which are involved in the biosynthesis of several cell wall matrix polysaccharides. Representatives from mammals are involved in heparin biosynthesis. Correspondingly, members of GH47 have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides. This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!


9 July 2024: Yet another new family of beta-1,2-glucan-active enzymes! Today, Masahiro Nakajima Curator Approved the Glycoside Hydrolase Family 186 page by Sei Motouchi. GH186 is a family of anomer-inverting enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some GH186 members work as classic glycoside hydrolases, others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack. Also notable, GH186 members appear to use an extended chain of water molecules to relay acceptor deprotonation by the general base residue, i.e. a Grotthuss mechanism. Check out the GH186 page to learn more about these interesting enzymes, and make sure to see the GH189, GH144, and GH162 pages from this same group.


2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.