CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
 
(397 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''23 June 2013:''' ''Yet another Lexicon page:'' '''[[User:Spencer Williams|Spencer Williams]]''' updated the [[Lexicon]] page on '''[[Phosphorylases]]''' today to [[Curator Approved]] status, bring the number of completed [[Lexicon]] pages to 20.  '''[[Phosphorylases]]''' catalyze glycosidic bond cleavage through nucleophilic substitution with phosphate (PO<sub>4</sub><sup>--</sup>), and play important roles in, for example, storage polysaccharide breakdown by generating glucose-1-phosphate as a precursor to glycolysisNotably, '''[[phosphorylases]]''' based on both [[Glycoside Hydrolase Families|glycoside hydrolase]] and [[Glycosyltransferase Families|glycosyltransferase]] protein folds are known. ''Read more about this important class of carbohydrate-active enzymes '''[[Phosphorylases|here]]'''.
+
'''25 October 2024:''' ''Laminariawesome!'' Check out two new marine families of CBMs, '''[[CBM102]]''' and '''[[CBM103]]''', now on ''CAZypedia'' which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms.  Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrateBoth pages were [[author]]ed by '''[[User:Marie-Katherin Zuehlke|Marie-Katherin Zühlke]]'''. ''Read up on these environmentally important CBMs on their respective [[CBM102]] and [[CBM103]] pages!''  
 
----
 
----
'''''Attention CAZymologists!'' Upcoming conferences:'''
+
'''19 July 2024:''' ''Chalk-up one more for the GTs!'' The '''[[Glycosyltransferase Family 47]]''' page joined the small group of [[Curator Approved]] [[Glycosyltransferase Families]] pages in ''CAZypedia'' today. This entry was [[author]]ed by Ph.D. students '''[[User:Daniel Tehrani|Daniel Tehrani]]''' and '''[[User:Charlie Corulli|Charlie Corulli]]''', and [[Responsible Curator|Curated]] by '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' with input from '''[https://ccrc.uga.edu/team/kelley-moremen/ Kelley Moremen]'''.  Widely represented in plants, '''[[GT47]]''' members are anomer-[[inverting]] [[glycosyltransferases]], which are involved in the biosynthesis of several cell wall matrix polysaccharides.  Representatives from mammals are involved in heparin biosynthesis.  Correspondingly, members of [[GH47]] have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides.  ''This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!''
* [[File:Grc.png|left|x50px|link=http://www.grc.org/programs.aspx?year=2013&program=cellulo]] Registration is now open for the [http://www.grc.org/programs.aspx?year=2013&program=cellulo 2013 Gordon Research Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes.] Follow the link for more information, including the schedule of world-leading speakers.  Junior scientists are especially encouraged to attend the affiliated [http://www.grc.org/programs.aspx?year=2013&program=grs_cellul Gordon Research Seminar]. ''
 
* [[File:Alamy 5.jpg|left|x50px|link=http://imb.savba.sk/~janecek/Alamys/Alamy_5/]] [http://imb.savba.sk/~janecek/Alamys/Alamy_5/ Fifth Symposium on the Alpha-Amylase Family - ALAMY_5], October 20-24, Smolenice Castle, Slovakia.
 
 
----
 
----
'''22 May 2013:''' ''Our very first CBM page!:'' '''[[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]]''' and '''[[User:Al Boraston|Alisdair Boraston]]''' finalized ''CAZypedia's'' first [[Carbohydrate Binding Module Families|Carbohydrate Binding Module Family]] page, '''[[CBM32]]''', todayThis ushers in a new phase in ''CAZypedia's'' development, and we are looking forward to the continued evolution of this group of pages on these [[Carbohydrate-binding_modules|non-catalytic, substrate-binding, CAZyme-associated protein modules]].
+
'''9 July 2024:''' ''Yet another new family of beta-1,2-glucan-active enzymes!'' Today, '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 186]]''' page by '''[[User:Sei Motouchi|Sei Motouchi]]'''. '''[[GH186]]''' is a family of anomer-[[inverting]] enzymes from bacteria, members of which are specific for beta-1,2-glucansIntriguingly, although some [[GH186]] members work as classic [[glycoside hydrolases]], others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack.  Also notable, [[GH186]] members appear to use an extended chain of water molecules to relay acceptor deprotonation by the [[general base]] residue, ''i.e.'' a [https://en.wikipedia.org/wiki/Grotthuss_mechanism Grotthuss mechanism]. ''Check out the '''[[GH186]]''' page to learn more about these interesting enzymes, and make sure to see the [[GH189]], [[GH144]], and [[GH162]] pages from this same group.''
 +
 
 
----
 
----
'''2 May 2013:''' ''Adding on to the Lexicon:'' Today '''[[User:Spencer Williams|Spencer Williams]]''' added the finishing touches to the [[Lexicon]] page on '''[[Transglycosylases]]'''.  Transglycosylation - the ability to ''non-hydrolytically'' rearrange glycosidic bonds between one or more substrates - is a feature of many [[Glycoside hydrolases]], especially those which use the [[retaining]] mechanism.  In such enzymes, the covalent glycosyl-enzyme reaction intermediate can be intercepted by either water (yielding hydrolysis) or a sugar "acceptor" substrate (yielding transglycosylation).  Although transglycosylation is generally a side activity of retaining enzymes, a handful are naturally very predominant '''[[Transglycosylases]]'''.  ''See the [[Lexicon]] page to learn more, including specific examples!''
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.
 
----
 
----

Latest revision as of 05:59, 31 October 2024

25 October 2024: Laminariawesome! Check out two new marine families of CBMs, CBM102 and CBM103, now on CAZypedia which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms. Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate. Both pages were authored by Marie-Katherin Zühlke. Read up on these environmentally important CBMs on their respective CBM102 and CBM103 pages!


19 July 2024: Chalk-up one more for the GTs! The Glycosyltransferase Family 47 page joined the small group of Curator Approved Glycosyltransferase Families pages in CAZypedia today. This entry was authored by Ph.D. students Daniel Tehrani and Charlie Corulli, and Curated by Breeanna Urbanowicz with input from Kelley Moremen. Widely represented in plants, GT47 members are anomer-inverting glycosyltransferases, which are involved in the biosynthesis of several cell wall matrix polysaccharides. Representatives from mammals are involved in heparin biosynthesis. Correspondingly, members of GH47 have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides. This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!


9 July 2024: Yet another new family of beta-1,2-glucan-active enzymes! Today, Masahiro Nakajima Curator Approved the Glycoside Hydrolase Family 186 page by Sei Motouchi. GH186 is a family of anomer-inverting enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some GH186 members work as classic glycoside hydrolases, others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack. Also notable, GH186 members appear to use an extended chain of water molecules to relay acceptor deprotonation by the general base residue, i.e. a Grotthuss mechanism. Check out the GH186 page to learn more about these interesting enzymes, and make sure to see the GH189, GH144, and GH162 pages from this same group.


2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.