CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.
CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.
Difference between revisions of "Syn/anti lateral protonation"
Wim Nerinckx (talk | contribs) |
Wim Nerinckx (talk | contribs) |
||
| Line 857: | Line 857: | ||
| | | | ||
| | | | ||
| + | |- | ||
| + | | [[GH89]] | ||
| + | | none | ||
| + | | (β/α)<sub>8</sub> | ||
| + | | beta | ||
| + | | retaining | ||
| + | | ''syn'' | ||
| + | | [{{PDBlink}}2vca 2vca] | ||
| + | | α-N-acetylglucosaminidase | ||
| + | | ''Clostridium perfringens'' | ||
| + | | GlcNAc | ||
| + | | Glu601 | ||
| + | | Glu483 | ||
| + | | <cite>Ficko-Blean2008</cite> | ||
|- | |- | ||
| [[GH93]] | | [[GH93]] | ||
| Line 978: | Line 992: | ||
# Yaoi2007 pmid=17498741 | # Yaoi2007 pmid=17498741 | ||
# Przylas2000 pmid=11082203 | # Przylas2000 pmid=11082203 | ||
| + | # Ficko-Blean2008 pmid=18443291 | ||
# Hidaka2004 pmid=15274915 | # Hidaka2004 pmid=15274915 | ||
# Nagae2007 pmid=17459873 | # Nagae2007 pmid=17459873 | ||
Revision as of 08:20, 5 January 2010
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Wim Nerinckx^^^
- Responsible Curator: ^^^Spencer Williams^^^
Overview
This page will provide a table (and eventually a full lexicon article) on the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and the more recent summary by Nerinckx et al. [2].
Table
This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the page tab above the page title.
| Family | Clan | Structure fold | Anomeric specificity | Mechanism | Syn/anti protonator | Example PDB ID | Enzyme | Organism | Ligand | General acid | Nucleophile or General base | Primary reference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GH1 | A | (β/α)8 | beta | retaining | anti | 4pbg | 6-phospho-beta-galactosidase | Lactococcus lactis | product | Glu160 | Glu375 | [3] |
| GH2 | A | (β/α)8 | beta | retaining | anti | 1jz0 | beta-galactosidase | Escherechia coli | 2-F-galactosyl | Glu461 | Glu537 | [4] |
| GH3 | none | (β/α)8 | beta | retaining | anti | 1iew | exo-1,3-1,4-glucanase | Hordeum vulgare | 2-F-glucosyl | Glu491 | Asp285 | [5] |
| GH5 | A | (β/α)8 | beta | retaining | anti | 1iew | endo-1,4-glucanase | Bacillus agaradhaerans | 2-F-glucosyl | Glu129 | Glu228 | [6] |
| GH6 | none | (β/α)8 | beta | inverting | syn | 1ocn | cellobiohydrolase | Humicola insolens | Glc-isofagomine | Asp226 | debated | [7] |
| GH7 | B | β-jelly roll | beta | retaining | syn | 1ovw | endo-1,4-glucanase | Fusarium oxysporum | Michaelis thio-Glc5 | Glu202 | Glu197 | [8] |
| GH8 | M | (α/α)6 | beta | inverting | anti | 1kwf | endo-1,4-glucanase | Clostridium thermocellum | Michaelis | Glu95 | Asp278 | [9] |
| GH9 | none | (α/α)6 | beta | inverting | syn | 3tf4, 4tf4 | cellulase | Thermomonospora fusca | product | Glu424 | Asp55, Asp58 | [10] |
| GH10 | A | (β/α)8 | beta | retaining | anti | 2xyl | xylanase B (Cex) | Cellulomonas fimi | Xyl-2-F-xylosyl | Glu127 | Glu233 | [11] |
| GH11 | C | β-jelly roll | beta | retaining | syn | 1bvv | xylanase | Bacillus circulans | Xyl-2-F-xylosyl | Glu172 | Glu78 | [12] |
| GH12 | C | β-jelly roll | beta | retaining | syn | 2nlr | endo-1,4-glucanase | Streptomyces lividans | Glc2-2-F-glucosyl | Glu203 | Glu120 | [13] |
| GH13 | H | (β/α)8 | alpha | retaining | anti | 1ckx | beta-cyclodextrin glucanotransferase | Bacillus circulans | Michaelis | Glu257 | Asp229 | [14] |
| GH14 | none | (β/α)8 | alpha | inverting | syn | 1b9z | beta-amylase | Bacillus cereus | product | Glu172 | Glu367 | [15] |
| GH15 | L | (α/α)6 | alpha | inverting | syn | 1gah | glucoamylase | Aspergillus awamori | acarbose | Glu179 | Glu400 | [16] |
| GH16 | B | β-jelly roll | beta | retaining | syn | 1urx | beta-agarase A | Zobellia galactanivorans | product | Glu152 | Glu147 | [17] |
| GH17 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH18 | K | (β/α)8 | beta | retaining | anti | 1ffr | chitinase A | Serratia marcescens | Michaelis (NAG)6 | Glu315 | internal | [18] |
| GH20 | K | (β/α)8 | beta | retaining | anti | 1c7s | chitobiase | Serratia marcescens | Michaelis chitobiose | Glu540 | internal | [19] |
| GH22 | none | lysozyme type | beta | retaining | syn | 1h6m | lysozyme C | Gallus gallus | Chit-2-F-chitosyl | Glu35 | Asp52 | [20] |
| GH23 | none | lysozyme type | beta | inverting | syn | 1lsp | lysozyme G | Cygnus atratus | Bulgecin A | Glu73 | internal | [21] |
| GH24 | I | α + β | beta | inverting | syn | 148l | lysozyme E | Bacteriophage T4 | chitobiosyl | Glu11 | Glu26 | [22] |
| GH26 | A | (β/α)8 | beta | retaining | anti | 1gw1 | mannanase A | Cellvibrio japonicus | (Man2)-2-F-mannosyl | Glu212 | Glu320 | [23] |
| GH27 | D | (β/α)8 | alpha | retaining | anti | 1ktc | α-N-acetyl galactosaminidase | Gallus gallus | NAGal | Asp201 | Asp410 | [24] |
| GH29 | none | (β/α)8 | alpha | retaining | syn | 1hl9 | α-L-fucosidase | Thermotoga maritima | 2-F-fucopyranosyl | Glu266 | Asp224 | [25] |
| GH30 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH31 | D | (β/α)8 | alpha | retaining | anti | 1xsk | α-xylosidase | Escherechia coli | 5-F-xylosyl | Asp482 | Asp416 | [26] |
| GH32 | J | 5-fold β-propeller | alpha | retaining | anti | 2add | fructan β-(2,1)-fructosidase | Cichorium intybus | sucrose | Glu201 | Asp22 | [27] |
| GH33 | E | 6-fold β-propeller | alpha | retaining | anti | 1s0k | trans-sialidase | Trypanosoma cruzi | 2-F,3-F-sialosyl | Asp59 | Tyr342 | [28] |
| GH34 | E | 6-fold β-propeller | alpha | retaining | anti | 2bat | neuraminidase | Influenza A virus | sialic acid | Asp151 | Tyr406 | [29] |
| GH35 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH37 | G | (α/α)6 | alpha | inverting | anti | 2jf4 | trehalase | Escherechia coli | validoxylamine | Asp312 | Glu496 | [30] |
| GH38 | none | (β/α)7 | alpha | retaining | anti | 1qwn | α-mannosidase II | Drosophila melanogaster | 5-F-β-L-gulosyl | Asp341 | Asp204 | [31] |
| GH39 | A | (β/α)8 | beta | retaining | anti | 1uhv | β-xylosidase | Thermoanaerobacterium saccharolyticum | 2-F-xylosyl | Glu160 | Glu277 | [32] |
| GH42 | A | (β/α)8 | beta | retaining | anti | 1kwk | β-galactosidase | Thermus thermophylus A4 | galactose | Glu141 | Glu312 | [33] |
| GH44 | none | (β/α)8 | beta | retaining | anti | 2eqd | endoglucanase | Clostridium thermocellum | cellooctaose | Glu186 | Glu359 | [34] |
| GH45 | none | six-stranded β-barrel | beta | inverting | syn | 4eng | endo-1,4-glucanase | Humicola insolens | product | Asp121 | Asp10 | [35] |
| GH46 | I | α + β | beta | inverting | syn by similarity | |||||||
| GH47 | none | (α/α)7 | alpha | inverting | anti | 1x9d | α-mannosidase I | Homo sapiens | Michaelis | Asp463 | Glu599 | [36], [37] |
| GH48 | M | (α/α)6 | beta | inverting | anti by similarity | |||||||
| GH50 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH51 | A | (β/α)8 | alpha | retaining | anti | 1pz2 | α-L-arabinofuranosidase | Geobacillus stearothermophilus | L-arabinofuranosyl | Glu175 | Glu294 | [38] |
| GH53 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH54 | none | β-sandwich | alpha | retaining | anti | 1wd4 | α-L-arabinofuranosidase B | Aspergillus kawachii | L-arabinofuranose | Asp297 | Glu221 | [39] |
| GH56 | none | (β/α)7 | beta | retaining | anti | 1fcv | hyaluronidase | Apis mellifera | (hyaluron.)4 | Glu113 | internal | [40] |
| GH57 | none | (β/α)7 | alpha | retaining | anti | 1kly | glucanotransferase | Thermococcus litoralis | acarbose | Asp214 | Glu123 | [41] |
| GH59 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH63 | G | (α/α)6 | alpha | inverting | anti by similarity | |||||||
| GH65 | L | (α/α)6 | alpha | inverting | syn by similarity | |||||||
| GH67 | none | (β/α)8 | alpha | inverting | syn | 1gql | α-glucuronidase | Cellvibrio japonicus Ueda107 | glucuronic acid | Glu292 | unknown | [42] |
| GH68 | J | 5-fold β-propeller | beta | retaining | anti | 1pt2 | levansucrase | Bacillus subtilis | sucrose | Glu342 | Asp86 | [43] |
| GH70 | H | (β/α)8 | alpha | retaining | anti by similarity | |||||||
| GH72 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH74 | none | 7-fold β-propeller | beta | inverting | syn | 2ebs | cellobiohydrolase (OXG-RCBH) | Geotrichum sp. m128 | xyloglucan heptasaccharide | Asp465 | Asp35 | [44] |
| GH77 | H | (β/α)8 | alpha | retaining | anti | 1esw | amylomaltase | Thermus aquaticus | acarbose | Asp395 | Asp293 | [45] |
| GH79 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH80 | I | α + β | beta | inverting | syn by similarity | |||||||
| GH83 | E | 6-fold β-propeller | alpha | retaining | anti by similarity | |||||||
| GH85 | K | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH86 | A | (β/α)8 | beta | retaining | anti by similarity | |||||||
| GH89 | none | (β/α)8 | beta | retaining | syn | 2vca | α-N-acetylglucosaminidase | Clostridium perfringens | GlcNAc | Glu601 | Glu483 | [46] |
| GH93 | E | 6-fold β-propeller | alpha | retaining | anti by similarity | |||||||
| GH94 | none | (α/α)6 | beta | inverting | syn | 1v7x | chitobiose phosphorylase | Vibrio proteolyticus | GlcNAc | Asp492 | phosphate | [47] |
| GH95 | none | (α/α)6 | alpha | inverting | anti | 2ead | α-1,2-L-fucosidase | Bifibacterium bifidum | substrate | Glu566 | Asn423 Asp766 | [48] |
| GH102 | none | double-psi beta-barrel | beta | retaining | syn | 2pi8 | lytic transglycosylase A | Escherechia coli | chitohexaose | Asp308 | none | [49] |
| GH113 | A | (β/α)8 | beta | retaining | anti by similarity |
References
Error fetching PMID 15062085:
Error fetching PMID 11560481:
Error fetching PMID 10884356:
Error fetching PMID 15299731:
Error fetching PMID 8259514:
Error fetching PMID 12005440:
Error fetching PMID 15501829:
Error fetching PMID 17335500:
Error fetching PMID 1438172:
Error fetching PMID 17455176:
Error fetching PMID 12960159:
Error fetching PMID 12215416:
Error fetching PMID 17905739:
Error fetching PMID 15299721:
Error fetching PMID 15713668:
Error fetching PMID 18619586:
Error fetching PMID 14517232:
Error fetching PMID 11080624:
Error fetching PMID 12618437:
Error fetching PMID 11937059:
Error fetching PMID 17498741:
Error fetching PMID 18443291:
Error fetching PMID 17502382:
-
Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. Article online.
- Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 |
- Wiesmann C, Hengstenberg W, and Schulz GE. (1997). Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997;269(5):851-60. DOI:10.1006/jmbi.1997.1084 |
- Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, and Matthews BW. (2001). A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry. 2001;40(49):14781-94. DOI:10.1021/bi011727i |
- Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 |
- Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 |
- Varrot A, Macdonald J, Stick RV, Pell G, Gilbert HJ, and Davies GJ. (2003). Distortion of a cellobio-derived isofagomine highlights the potential conformational itinerary of inverting beta-glucosidases. Chem Commun (Camb). 2003(8):946-7. DOI:10.1039/b301592k |
- Sulzenbacher G, Driguez H, Henrissat B, Schülein M, and Davies GJ. (1996). Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996;35(48):15280-7. DOI:10.1021/bi961946h |
- Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 |
- Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, and Wilson DB. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol. 1998;180(7):1709-14. DOI:10.1128/JB.180.7.1709-1714.1998 |
- Notenboom V, Birsan C, Warren RA, Withers SG, and Rose DR. (1998). Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation. Biochemistry. 1998;37(14):4751-8. DOI:10.1021/bi9729211 |
- Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, and Brayer GD. (1999). Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 1999;38(17):5346-54. DOI:10.1021/bi982946f |
- Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i |
- Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 |
- Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, and Utsumi S. (1999). Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochemistry. 1999;38(22):7050-61. DOI:10.1021/bi9829377 |
- Error fetching PMID 8679589:
- Error fetching PMID 15062085:
- Error fetching PMID 11560481:
- Error fetching PMID 10884356:
- Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 |
- Error fetching PMID 15299731:
- Error fetching PMID 8259514:
- Ducros VM, Zechel DL, Murshudov GN, Gilbert HJ, Szabó L, Stoll D, Withers SG, and Davies GJ. (2002). Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl. 2002;41(15):2824-7. DOI:10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO;2-G |
- Error fetching PMID 12005440:
- Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, and Bourne Y. (2004). Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem. 2004;279(13):13119-28. DOI:10.1074/jbc.M313783200 |
- Error fetching PMID 15501829:
- Error fetching PMID 17335500:
- Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 |
- Error fetching PMID 1438172:
- Error fetching PMID 17455176:
- Error fetching PMID 12960159:
- Yang JK, Yoon HJ, Ahn HJ, Lee BI, Pedelacq JD, Liong EC, Berendzen J, Laivenieks M, Vieille C, Zeikus GJ, Vocadlo DJ, Withers SG, and Suh SW. (2004). Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol. 2004;335(1):155-65. DOI:10.1016/j.jmb.2003.10.026 |
- Error fetching PMID 12215416:
- Error fetching PMID 17905739:
- Error fetching PMID 15299721:
- Error fetching PMID 15713668:
- Error fetching PMID 18619586:
- Error fetching PMID 14517232:
- Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 |
- Error fetching PMID 11080624:
- Error fetching PMID 12618437:
- Error fetching PMID 11937059:
- Meng G and Fütterer K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 2003;10(11):935-41. DOI:10.1038/nsb974 |
- Error fetching PMID 17498741:
- Przylas I, Terada Y, Fujii K, Takaha T, Saenger W, and Sträter N. (2000). X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans. Eur J Biochem. 2000;267(23):6903-13. DOI:10.1046/j.1432-1033.2000.01790.x |
- Error fetching PMID 18443291:
- Hidaka M, Honda Y, Kitaoka M, Nirasawa S, Hayashi K, Wakagi T, Shoun H, and Fushinobu S. (2004). Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold. Structure. 2004;12(6):937-47. DOI:10.1016/j.str.2004.03.027 |
- Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, and Kato R. (2007). Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282(25):18497-18509. DOI:10.1074/jbc.M702246200 |
- Error fetching PMID 17502382: