CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 25"
Line 29: | Line 29: | ||
== Substrate specificities == | == Substrate specificities == | ||
− | + | Substrate specificities | |
− | + | Family GH25 lysozymes otherwise known as Chalaropsis (CH) type of lysozymes (from is initial characterisation from Chalaropsis species of fungus<cite>1</cite>) cleaves the β-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) in the carbohydrate backbone of bacterial peptidoglycan. The characterized lysozymes from this family exhibit both β-1,4-N-acetyl- and β-1,4- N ,6-O-diacetylmuramidase activities and are able to degrade O-acetylated peptidoglycan present in Staphylococcus aureus and other pathogens2. The activity of GH25 enzymes appears to fulfil two main biological roles in bacteria. These roles are the re-modelling of peptidoglycan in cellular process such as division and promoting the dissemination of phage progeny toward the end of the phage lytic cycle, which is achieved by bacterial cell lysis. For this reason many GH25 proteins are found to be either chromosomal, phage or prophage encoded. | |
+ | The majority of the GH25 family is comprised of bacterial or prokaryotic viral (phage) members. There are however a few eukaryotic representatives, but these are so far restricted to the fungal kingdom. The roles of these fungal enzymes are less clear, many possess signal secretion peptides indicating a likely extracellular location, possibly for the purpose of obtaining or gaining assess to nutrients or even as a selective agent against bacteria. | ||
This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below). Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>. You can even cite books using just the ISBN <cite>3</cite>. References that are not in PubMed can be typed in by hand <cite>MikesClassic</cite>. | This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below). Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>. You can even cite books using just the ISBN <cite>3</cite>. References that are not in PubMed can be typed in by hand <cite>MikesClassic</cite>. | ||
Line 54: | Line 55: | ||
== References == | == References == | ||
<biblio> | <biblio> | ||
− | # | + | #1 Hash JH, Rothlauf MV. The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem 1967;242(23):5586-5590. |
#He1999 pmid=9312086 | #He1999 pmid=9312086 | ||
#3 isbn=978-0-240-52118-3 | #3 isbn=978-0-240-52118-3 |
Revision as of 04:46, 16 February 2010
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Ed Taylor^^^
- Responsible Curator: ^^^Gideon Davies^^^
Glycoside Hydrolase Family GHnn | |
Clan | GH-x |
Mechanism | retaining/inverting |
Active site residues | known/not known |
CAZy DB link | |
http://www.cazy.org/fam/GHnn.html |
Substrate specificities
Substrate specificities Family GH25 lysozymes otherwise known as Chalaropsis (CH) type of lysozymes (from is initial characterisation from Chalaropsis species of fungus[1]) cleaves the β-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) in the carbohydrate backbone of bacterial peptidoglycan. The characterized lysozymes from this family exhibit both β-1,4-N-acetyl- and β-1,4- N ,6-O-diacetylmuramidase activities and are able to degrade O-acetylated peptidoglycan present in Staphylococcus aureus and other pathogens2. The activity of GH25 enzymes appears to fulfil two main biological roles in bacteria. These roles are the re-modelling of peptidoglycan in cellular process such as division and promoting the dissemination of phage progeny toward the end of the phage lytic cycle, which is achieved by bacterial cell lysis. For this reason many GH25 proteins are found to be either chromosomal, phage or prophage encoded. The majority of the GH25 family is comprised of bacterial or prokaryotic viral (phage) members. There are however a few eukaryotic representatives, but these are so far restricted to the fungal kingdom. The roles of these fungal enzymes are less clear, many possess signal secretion peptides indicating a likely extracellular location, possibly for the purpose of obtaining or gaining assess to nutrients or even as a selective agent against bacteria. This is an example of how to make references to a journal article [2]. (See the References section below). Multiple references can go in the same place like this [2, 3]. You can even cite books using just the ISBN [4]. References that are not in PubMed can be typed in by hand [5].
Kinetics and Mechanism
Content is to be added here.
Catalytic Residues
Content is to be added here.
Three-dimensional structures
Content is to be added here.
Family Firsts
- First sterochemistry determination
- Cite some reference here, with a short (1-2 sentence) explanation [2].
- First catalytic nucleophile identification
- Cite some reference here, with a short (1-2 sentence) explanation [5].
- First general acid/base residue identification
- Cite some reference here, with a short (1-2 sentence) explanation [3].
- First 3-D structure
- Cite some reference here, with a short (1-2 sentence) explanation [4].
References
-
Hash JH, Rothlauf MV. The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem 1967;242(23):5586-5590.
- He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 |
- Robert V. Stick and Spencer J. Williams. (2009) Carbohydrates. Elsevier Science.
-
Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006