CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 91"
Harry Brumer (talk | contribs) m (updated CAZy DB link) |
|||
Line 21: | Line 21: | ||
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | |{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | ||
|- | |- | ||
− | | colspan="2" | | + | | colspan="2" |{{CAZyDBlink}}GH91.html |
|} | |} | ||
</div> | </div> |
Revision as of 05:33, 9 May 2011
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Temporary Responsible Curator: ^^^Bernard Henrissat^^^
Glycoside Hydrolase Family GH91 | |
Clan | |
Mechanism | |
Active site residues | |
CAZy DB link | |
https://www.cazy.org/GH91.html |
History of reclassification
Entries in Glycoside Hydrolase Family 91 were reclassified to Polysaccharide Lyase Family 19 on 30 July 2008 due to recommendations of the NC-IUBMB, which stated that these enzymes are lyases, as there is no water involved in the reaction. Indeed, polysaccharide cleavage in some members occurs via intramolecular hydroxide attack, rather than glycosidic bond hydrolysis (see EC 4.2.2.17 and EC 4.2.2.18).
The family was placed back to Glycoside Hydrolase Family 91 on 20 April 2010 due to direct analogy with the lytic transglycosidases of GH23, GH102, GH103, and GH104 and in particular the observation of a hydrolase (di-fructofuranose 1,2':2,3' dianhydride hydrolase, DFA-IIIase) in this family [1, 2].
Substrate specificities
Content is to be added here.
Kinetics and Mechanism
Content is to be added here.
Catalytic Residues
Content is to be added here.
Three-dimensional structures
Content is to be added here.
Family Firsts
- First stereochemistry determination
- .
- First catalytic nucleophile identification
- .
- First general acid/base residue identification
- .
- First 3-D structure
- .
References
-
H. Sakurai, A. Yokota, Y. Sumita, Y. Mori, H. Matsui and F. Tomita, Metabolism of DFA III by Arthrobacter sp. H65-7: purification and properties of a DFA III hydrolysis enzyme (DFA IIIase). Biosci. Biotechnol. Biochem. 61 (1997), pp. 989–993. DOI: 10.1271/bbb.61.989
- Saito K, Sumita Y, Nagasaka Y, Tomita F, and Yokota A. (2003). Molecular cloning of the gene encoding the di-D-Fructofuranose 1,2':2,3' dianhydride hydrolysis enzyme (DFA IIIase) from Arthrobacter sp. H65-7. J Biosci Bioeng. 2003;95(5):538-40. DOI:10.1016/s1389-1723(03)80058-0 |