CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 47"

From CAZypedia
Jump to navigation Jump to search
Line 45: Line 45:
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Unequivocal assignment of catalytic residues for GH47 &alpha;-mannosidases is complicated by the presence of 3 carboxylate-containing residues all approximately 9.5 &Aring; apart from one another in the active site. Each of these could plausibly fulfill roles as catalytic residues <cite>Howell2000</cite>. Furthermore, all of the plausible catalytic residues complex water, as would be expected of the general base residue. Thus, it appears that the general acid residue transmits a proton to the glycosidic oxygen atom through a water molecule. Site directed mutagenesis of residues in the &alpha;-mannosidase I  of ''Aspergillus saitoi'' and ''Saccharomyces cerevisiae'' predated determination of a crystal structure but demonstrated that mutation of any of the three catalytic candidates led to total or near-total loss of activity <cite>Herscovics1999 Ischishima1997</cite>. Glu132 (Glu330 in human ER &alpha;-mannosidase I) in ''Saccharomyces cerevisiae'' &alpha;-mannosidase I was initially thought to be most likely candidate as the general base residue <cite>Howell2000</cite>. Subsequent crystal structures of human ER &alpha;-mannosidase I in complex with kifunensine and 1-deoxymannojirimycin bound these ligands in an unusual <sup>1</sup>''C''<sub>4</sub> conformation <cite>HowellJBC2000</cite>. These complexes were interpreted as being representative of a <sup>1</sup>''C''<sub>4</sub> Michaelis complex, incompatible with Glu330 (Glu132 in ''Saccharomyces'') acting as the general base in an inverting mechanism. Thus, the general base residue was reassigned as either Glu599 or Asp463 (Glu435 and Asp275 in ''Saccharomyces'', respectively). A computational docking study found Glu599 to be the most likely general base, with Ca<sup>2+</sup> also coordinated to the nucelophilic water molecule <cite>Reilly2002</cite>. However, complexes with S-linked substrate analogues were suggestive of a <sup>3,O</sup>''B''/<sup>3</sup>''S''<sub>1</sub>&rarr;<sup>3</sup>''H''<sub>4</sub>&rarr;<sup>1</sup>''C''<sub>4</sub> conformational itinerary, the reverse of that initially assumed <cite>Moremen2005 Davies2012</cite>. The position of Glu330 (Glu132 in ''Saccharomyces'') on the opposite face of the glycan ring to the potential general base residues in human ER &alpha;-mannosidase I is consistent with a role as the general acid <cite>HowellJBC2000</cite>. However, a computational docking study found Asp463 (Asp275 in ''Saccharomyces'') to be the most likely general acid, based upon the assumption that GH47 mannosidases are ''anti''-protonators <cite>Reilly2008</cite>.
+
Unequivocal assignment of catalytic residues for GH47 &alpha;-mannosidases is complicated by the presence of 3 carboxylate-containing residues all approximately 9.5 &Aring; apart from one another in the active site. Each of these could plausibly fulfill roles as catalytic residues <cite>Howell2000</cite>. Furthermore, all of the plausible catalytic residues complex water, as would be expected of the general base residue. Thus, it appears that the general acid residue transmits a proton to the glycosidic oxygen atom through a water molecule. Site directed mutagenesis of residues in the &alpha;-mannosidase I  of ''Aspergillus saitoi'' and ''Saccharomyces cerevisiae'' predated determination of a crystal structure but demonstrated that mutation of any of the three catalytic candidates led to total or near-total loss of activity <cite>Herscovics1999 Ischishima1997</cite>. Mutagenesis of residues in human  ER &alpha;-mannosidase I, informed by the determination of the crystal structure, could not unambiguously assign the role of catalytic residues <cite>Moremen2005</cite>. Glu132 (Glu330 in human ER &alpha;-mannosidase I) in ''Saccharomyces cerevisiae'' &alpha;-mannosidase I was initially thought to be most likely candidate as the general base residue <cite>Howell2000</cite>. Subsequent crystal structures of human ER &alpha;-mannosidase I in complex with kifunensine and 1-deoxymannojirimycin bound these ligands in an unusual <sup>1</sup>''C''<sub>4</sub> conformation <cite>HowellJBC2000</cite>. These complexes were interpreted as being representative of a <sup>1</sup>''C''<sub>4</sub> Michaelis complex with Glu330 (Glu132 in ''Saccharomyces'') acting as the general base being incompatible with an inverting mechanism. Thus, the general base residue was reassigned as either Glu599 or Asp463 (Glu435 and Asp275 in ''Saccharomyces'', respectively). A computational docking study found Glu599 to be the most likely general base, with Ca<sup>2+</sup> also coordinated to the nucelophilic water molecule <cite>Reilly2002</cite>. However, complexes with S-linked substrate analogues implicate a <sup>3,O</sup>''B''/<sup>3</sup>''S''<sub>1</sub>&rarr;<sup>3</sup>''H''<sub>4</sub>&rarr;<sup>1</sup>''C''<sub>4</sub> conformational itinerary, the reverse of that used to preclude Glu330 (Glu132 in ''Saccharomyces'') as the general base residue <cite>Moremen2005 Davies2012</cite>. The position of Glu330 (Glu132 in ''Saccharomyces'') on the opposite face of the glycan ring to the putative general base residue, Glu599 in human ER &alpha;-mannosidase I (Glu435 in ''Saccharomyces'') is consistent with a role as the general acid <cite>HowellJBC2000</cite>. However, a computational docking study found Asp463 (Asp275 in ''Saccharomyces'') to be the most likely general acid, based upon the assumption that GH47 mannosidases are ''anti''-protonators <cite>Reilly2008</cite>.
  
  

Revision as of 20:54, 10 January 2013


Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan none, (α/α)7 fold
Mechanism inverting
Active site residues debated
CAZy DB link
https://www.cazy.org/GH47.html


Substrate specificities

GH47 glycoside hydrolases are exo-acting α-1,2-mannosidases. Members from this family play important roles in the processing of N-glycans.

Content is to be added here.


Kinetics and Mechanism

GH47 mannosidases catalyze glycosidic cleavage with inversion of stereochemistry, as first determined employing 1H NMR spectroscopy with Saccharomyces cervisiae α-1,2-mannosidase using Man9GlcNAc as a substrate [1]. Classical inverting glycosidases operate through a single displacement mechanism, where a general base residue acts to deprotonate a water molecule, facilitating nucleophilic attack at the anomeric position. This is assisted by concurrent activation of the glycosidic linkage through protonation by a general acid residue.

GH47 enzymes are Ca2+-dependent, as demonstrated by loss of activity upon addition of the metal binding ligand EDTA, and restoration of activity through subsequent addition of Ca2+ [2]. Exo-α-mannosidases from GH38 and GH92 also require a metal ion for catalysis.

GH47 mannosidases operate through an unusual 3,OB/3S13H41C4 conformational itinerary. Structural studies employing unhydrolysable S-linked substrate analogues have examined the Michaelis complex, with the ligands found to bind in 3S1 [3] and 3,OB/3S1 conformations [4]. Mannoimidazole, whose binding to other mannosidases has been shown to be consistent with good transition state mimicry [5], binds GH47 in a 3H4 conformation [4]. Noeuromycin [4], kifunensine [6] and 1-deoxymannojirimycin [6] all bind in a 1C4 conformation, analogous to enzyme-product complexes. Computational studies also support a 3,OB/3S13H41C4 conformational itinerary [4, 7, 8]. Quantum mechanical/molecular modelling calculations have found that the free energy landscape of α-D-mannopyranose is perturbed on-enzyme such that the accessible conformations of the ligand are altered to those that correlate well with a 3,OB/3S13H41C4 conformational itinerary [4].


Catalytic Residues

Unequivocal assignment of catalytic residues for GH47 α-mannosidases is complicated by the presence of 3 carboxylate-containing residues all approximately 9.5 Å apart from one another in the active site. Each of these could plausibly fulfill roles as catalytic residues [9]. Furthermore, all of the plausible catalytic residues complex water, as would be expected of the general base residue. Thus, it appears that the general acid residue transmits a proton to the glycosidic oxygen atom through a water molecule. Site directed mutagenesis of residues in the α-mannosidase I of Aspergillus saitoi and Saccharomyces cerevisiae predated determination of a crystal structure but demonstrated that mutation of any of the three catalytic candidates led to total or near-total loss of activity [10, 11]. Mutagenesis of residues in human ER α-mannosidase I, informed by the determination of the crystal structure, could not unambiguously assign the role of catalytic residues [3]. Glu132 (Glu330 in human ER α-mannosidase I) in Saccharomyces cerevisiae α-mannosidase I was initially thought to be most likely candidate as the general base residue [9]. Subsequent crystal structures of human ER α-mannosidase I in complex with kifunensine and 1-deoxymannojirimycin bound these ligands in an unusual 1C4 conformation [6]. These complexes were interpreted as being representative of a 1C4 Michaelis complex with Glu330 (Glu132 in Saccharomyces) acting as the general base being incompatible with an inverting mechanism. Thus, the general base residue was reassigned as either Glu599 or Asp463 (Glu435 and Asp275 in Saccharomyces, respectively). A computational docking study found Glu599 to be the most likely general base, with Ca2+ also coordinated to the nucelophilic water molecule [12]. However, complexes with S-linked substrate analogues implicate a 3,OB/3S13H41C4 conformational itinerary, the reverse of that used to preclude Glu330 (Glu132 in Saccharomyces) as the general base residue [3, 4]. The position of Glu330 (Glu132 in Saccharomyces) on the opposite face of the glycan ring to the putative general base residue, Glu599 in human ER α-mannosidase I (Glu435 in Saccharomyces) is consistent with a role as the general acid [6]. However, a computational docking study found Asp463 (Asp275 in Saccharomyces) to be the most likely general acid, based upon the assumption that GH47 mannosidases are anti-protonators [13].


Three-dimensional structures

GH47 enzymes adopt a (α/α)7 barrel fold with a Ca2+ ion coordinated at the base of the barrel that is plugged by a β-hairpin at the C-terminus [9]. The –1 subsite lies in the core of the barrel with Ca2+ coordinating to the 2-OH and 3-OH groups of a ligand (inhibitor or substrate analogue), whose glycan ring is parallel to the barrel upon complexation [6].

The structural basis for differences in N-glycan branch specificity between ER and Golgi GH47 α-mannosidases has been examined through crystallographic studies comparing their binding to N-glycans [14]. The presumed enzyme-product complexes differed in their oligosaccharide conformation such that different oligosaccharide branches, corresponding to those readily cleaved by the respective enzymes, were projected into the active site.


Family Firsts

First sterochemistry determination
Saccharomyces cerevisiae α-1,2-mannosidase was shown to be inverting by 1H NMR [1].
First general base identification
Unambiguous identification hindered by presence of 3 carboxylate-containing residues in the active site that coordinate ligands through water molecules [9]. Believed to be Glu559 in human ER α-mannosidase I (Glu435 in S. cerevisiae) [12].
First general acid identification
Unambiguous identification hindered by presence of 3 carboxylate-containing residues in the active site that coordinate ligands through water molecules [9]. Reported to be Glu330 in human ER α-mannosidase I (Glu132 in S. cerevisiae) [6], however, a computational study has concluded that Asp463 acts as the general acid in human ER α-mannosidase I (Asp275 in S. cerevisiae) [13].
First 3-D structure
Saccharomyces cerevisiae α-1,2-mannosidase [9].

References

  1. Lipari F, Gour-Salin BJ, and Herscovics A. (1995). The Saccharomyces cerevisiae processing alpha 1,2-mannosidase is an inverting glycosidase. Biochem Biophys Res Commun. 1995;209(1):322-6. DOI:10.1006/bbrc.1995.1506 | PubMed ID:7726853 [Herscovics1995]
  2. Jelinek-Kelly S and Herscovics A. (1988). Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the alpha-mannosidase which removes one specific mannose residue from Man9GlcNAc. J Biol Chem. 1988;263(29):14757-63. | Google Books | Open Library PubMed ID:3049586 [Herscovics1988]
  3. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, and Moremen KW. (2005). Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem. 2005;280(16):16197-207. DOI:10.1074/jbc.M500119200 | PubMed ID:15713668 [Moremen2005]
  4. Thompson AJ, Dabin J, Iglesias-Fernández J, Ardèvol A, Dinev Z, Williams SJ, Bande O, Siriwardena A, Moreland C, Hu TC, Smith DK, Gilbert HJ, Rovira C, and Davies GJ. (2012). The reaction coordinate of a bacterial GH47 α-mannosidase: a combined quantum mechanical and structural approach. Angew Chem Int Ed Engl. 2012;51(44):10997-1001. DOI:10.1002/anie.201205338 | PubMed ID:23012075 [Davies2012]
  5. Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Blériot Y, Vasella A, Gilbert HJ, and Davies GJ. (2008). Structural and biochemical evidence for a boat-like transition state in beta-mannosidases. Nat Chem Biol. 2008;4(5):306-12. DOI:10.1038/nchembio.81 | PubMed ID:18408714 [Davies2008]
  6. Vallee F, Karaveg K, Herscovics A, Moremen KW, and Howell PL. (2000). Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases. J Biol Chem. 2000;275(52):41287-98. DOI:10.1074/jbc.M006927200 | PubMed ID:10995765 [HowellJBC2000]
  7. Mulakala C, Nerinckx W, and Reilly PJ. (2006). Docking studies on glycoside hydrolase Family 47 endoplasmic reticulum alpha-(1-->2)-mannosidase I to elucidate the pathway to the substrate transition state. Carbohydr Res. 2006;341(13):2233-45. DOI:10.1016/j.carres.2006.05.011 | PubMed ID:16806128 [Reilly2006]
  8. Mulakala C, Nerinckx W, and Reilly PJ. (2007). The fate of beta-D-mannopyranose after its formation by endoplasmic reticulum alpha-(1-->2)-mannosidase I catalysis. Carbohydr Res. 2007;342(2):163-9. DOI:10.1016/j.carres.2006.11.012 | PubMed ID:17157281 [Reilly2007]
  9. Vallée F, Lipari F, Yip P, Sleno B, Herscovics A, and Howell PL. (2000). Crystal structure of a class I alpha1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J. 2000;19(4):581-8. DOI:10.1093/emboj/19.4.581 | PubMed ID:10675327 [Howell2000]
  10. Lipari F and Herscovics A. (1999). Calcium binding to the class I alpha-1,2-mannosidase from Saccharomyces cerevisiae occurs outside the EF hand motif. Biochemistry. 1999;38(3):1111-8. DOI:10.1021/bi981643i | PubMed ID:9894008 [Herscovics1999]
  11. Fujita A, Yoshida T, and Ichishima E. (1997). Five crucial carboxyl residues of 1,2-alpha-mannosidase from Aspergillus saitoi (A. phoenicis), a food microorganism, are identified by site-directed mutagenesis. Biochem Biophys Res Commun. 1997;238(3):779-83. DOI:10.1006/bbrc.1997.7389 | PubMed ID:9325167 [Ischishima1997]
  12. Mulakala C and Reilly PJ. (2002). Understanding protein structure-function relationships in Family 47 alpha-1,2-mannosidases through computational docking of ligands. Proteins. 2002;49(1):125-34. DOI:10.1002/prot.10206 | PubMed ID:12211022 [Reilly2002]
  13. Cantú D, Nerinckx W, and Reilly PJ. (2008). Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum alpha-(1-->2)-mannosidase I. Carbohydr Res. 2008;343(13):2235-42. DOI:10.1016/j.carres.2008.05.026 | PubMed ID:18619586 [Reilly2008]
  14. Tempel W, Karaveg K, Liu ZJ, Rose J, Wang BC, and Moremen KW. (2004). Structure of mouse Golgi alpha-mannosidase IA reveals the molecular basis for substrate specificity among class 1 (family 47 glycosylhydrolase) alpha1,2-mannosidases. J Biol Chem. 2004;279(28):29774-86. DOI:10.1074/jbc.M403065200 | PubMed ID:15102839 [Moremen2004]

All Medline abstracts: PubMed