CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 55"
Harry Brumer (talk | contribs) |
Harry Brumer (talk | contribs) m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1") |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{CuratorApproved}} | {{CuratorApproved}} | ||
− | * [[Author]]s: | + | * [[Author]]s: [[User:Takuya Ishida|Takuya Ishida]] and [[User:Kiyohiko Igarashi|Kiyohiko Igarashi]] |
− | * [[Responsible Curator]]: | + | * [[Responsible Curator]]: [[User:Shinya Fushinobu|Shinya Fushinobu]] |
---- | ---- | ||
Line 36: | Line 36: | ||
== Catalytic Residues == | == Catalytic Residues == | ||
− | + | A crystal structure of [[exo]]-β-1,3-glucanase Lam55A from [http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=5306 ''Phanerochaete chrysospoirum''] K-3 (PcLam55A) complexed with gluconolactone (PDB ID [{{PDBlink}}3eqo 3eqo]) suggested that Glu633 is the [[general acid]]. A candidate nucleophilic water was found near the C-1 atom of gluconolactone. A crystal structure of the bacterial enzyme SacteLam55A complexed with laminarihexaose (PDB ID [{{PDBlink}}4pf0 4pf0]), together with kinetic analysis of site-directed mutants, revealed that corresponding glutamic acid (Glu502 in SacteLam55A) also functions as the [[general acid]] in bacterial enzymes. | |
− | [[ | + | The identification of the [[general base]] in this family is less clear, as is common with several other inverting GH families. In the crystal structures of both PcLam55A and SacteLam55A, the candidate nucleophilic water has no direct interaction with a sidechain carboxylate, but rather with a highly conserved glutamine residue that is, in turn, hydrogen-bonded to a conserved glutamic acid (Glu480 in SacteLam55A). Mutations of this glutamic acid (E480Q and E480A of SacteLam55A) significantly reduce catalytic activity. Based on these kinetic and structural observations, a proton relay system for the activation of water has been proposed <CITE>Bianchetti2015</CITE>. |
− | In classical studies of a [[exo]]-β-1,3-glucanase from ''Sporotrichum dimorphosporum'' (formerly known as ''Basidiomycete'' QM-806), Jeffcoat and Kirkwood reported that chemical modification of histidine residues in the catalytic site of the enzyme caused irreversible loss of activity, suggesting a crucial role | + | In classical studies of a [[exo]]-β-1,3-glucanase from ''Sporotrichum dimorphosporum'' (formerly known as ''Basidiomycete'' QM-806), Jeffcoat and Kirkwood reported that chemical modification of histidine residues in the catalytic site of the enzyme caused irreversible loss of activity, suggesting a crucial role for this residue <CITE>Jeffcoat1987</CITE>. |
== Three-dimensional structures == | == Three-dimensional structures == | ||
The first solved 3-D structure was Lam55A from ''P. chrysosporium'' <cite>Ishida2009</cite>. In this structure, two tandem β-helix domains are positioned side-by-side to form a rib cage-like structure. The active site is located between the two β-helix domains. A duplicated motif had been found in the primary sequence of EXG1 from ''Cochliobolus carbonum'' <cite>Nikolskaya1998</cite>, predicting the presence of two structurally similar domains in this family. | The first solved 3-D structure was Lam55A from ''P. chrysosporium'' <cite>Ishida2009</cite>. In this structure, two tandem β-helix domains are positioned side-by-side to form a rib cage-like structure. The active site is located between the two β-helix domains. A duplicated motif had been found in the primary sequence of EXG1 from ''Cochliobolus carbonum'' <cite>Nikolskaya1998</cite>, predicting the presence of two structurally similar domains in this family. | ||
− | SacteLam55A E502A structure complexed with laminarioligosaccharides revealed | + | The SacteLam55A E502A structure complexed with laminarioligosaccharides revealed the positioning of the substrate in the active site and the conformation of the proposed catalytic residues. The structure also shows a solvent-exposed [[Surface Binding Site]] <CITE>Bianchetti2015</CITE>. |
== Family Firsts == | == Family Firsts == |
Latest revision as of 13:15, 18 December 2021
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
Glycoside Hydrolase Family 55 | |
Clan | none |
Mechanism | inverting |
Active site residues | not known |
CAZy DB link | |
https://www.cazy.org/GH55.html |
Substrate specificities
Glycoside Hydrolase family 55 consists exclusively of β-1,3-glucanases, including both exo- and endo-enzymes. All biochemically characterized members of this family had been limited to fungal enzymes until the extensive work by Bianchetti, Takasuka, et al., who reported the crystallography of exo-β-1,3-glucanase SacteLam55A from Streptmyces sp. SirexAA-E (Uniprot G2NFJ9), together with characterization of many other bacterial enzymes [1].
The majority of the members in this family are exo-glucan-1,3-β-glucosidases (EC 3.2.1.58), which cleave the terminal β-1,3-glycosidic linkage at the non-reducing end of β-1,3-glucans or β-1,3/1,6-glucans (β-1,3-glucan having single β-1,6-glucoside side chains, also known as laminarin, from brown algae). Many produce gentiobiose (β-D-glucopyranosyl-1,6-D-glucose) in addition to glucose during the degradation of β-1,3/1,6-glucan [2, 3]. Due to activity on laminarin, GH55 members may be referred to as "laminarinases." However, the physiological substrate for these enzymes might be fungal cell walls, whose major component is also β-1,3/1,6-glucan.
Bgn13.1 from Hypocrea lixii (formerly known as Trichoderma harzianum) [4] and LamAI from Trichoderma viride [5] were characterised as endo-acting enzymes (EC 3.2.1.39).
Kinetics and Mechanism
Family 55 enzymes are inverting enzymes, as shown by 1NMR analysis on ExgS from Aspergillus phoenicis (formerly known as Aspergillus saitoi) [6]. Release of α-glucose was subsequently confirmed by polarimetric analysis on family 55 enzymes from Acremonium persicinum [2]. These results are consistent with many classical reports on gentiobiose-producing exo-β-1,3-glucanases from fungi [7, 8], although the genes for these enzymes have not yet been described.
Catalytic Residues
A crystal structure of exo-β-1,3-glucanase Lam55A from Phanerochaete chrysospoirum K-3 (PcLam55A) complexed with gluconolactone (PDB ID 3eqo) suggested that Glu633 is the general acid. A candidate nucleophilic water was found near the C-1 atom of gluconolactone. A crystal structure of the bacterial enzyme SacteLam55A complexed with laminarihexaose (PDB ID 4pf0), together with kinetic analysis of site-directed mutants, revealed that corresponding glutamic acid (Glu502 in SacteLam55A) also functions as the general acid in bacterial enzymes.
The identification of the general base in this family is less clear, as is common with several other inverting GH families. In the crystal structures of both PcLam55A and SacteLam55A, the candidate nucleophilic water has no direct interaction with a sidechain carboxylate, but rather with a highly conserved glutamine residue that is, in turn, hydrogen-bonded to a conserved glutamic acid (Glu480 in SacteLam55A). Mutations of this glutamic acid (E480Q and E480A of SacteLam55A) significantly reduce catalytic activity. Based on these kinetic and structural observations, a proton relay system for the activation of water has been proposed [1].
In classical studies of a exo-β-1,3-glucanase from Sporotrichum dimorphosporum (formerly known as Basidiomycete QM-806), Jeffcoat and Kirkwood reported that chemical modification of histidine residues in the catalytic site of the enzyme caused irreversible loss of activity, suggesting a crucial role for this residue [9].
Three-dimensional structures
The first solved 3-D structure was Lam55A from P. chrysosporium [10]. In this structure, two tandem β-helix domains are positioned side-by-side to form a rib cage-like structure. The active site is located between the two β-helix domains. A duplicated motif had been found in the primary sequence of EXG1 from Cochliobolus carbonum [11], predicting the presence of two structurally similar domains in this family.
The SacteLam55A E502A structure complexed with laminarioligosaccharides revealed the positioning of the substrate in the active site and the conformation of the proposed catalytic residues. The structure also shows a solvent-exposed Surface Binding Site [1].
Family Firsts
- First sterochemistry determination
- Probably ExgS from A. saitoi by H-NMR analysis [6]. See kinetics and mechanism.
- First gene cloning
- BGN13.1 from T. harzianum (Uniprot P53626) [4] and EXG1 from C. carbonum (partial gene coning and gene knockout) (Uniprot P49426) [12]. First bacterial gene was cloned from Arthrobacter sp. NHB-10 (Uniprot A4PHQ5) [13].
- First general acid residue identification
- SacteLam55A from Streptmyces sp. SirexAA-E (Uniprot G2NFJ9) by crystal structure and kinetic analysis on mutants [1].
- First general base residue identification
- SacteLam55A from Streptmyces sp. SirexAA-E (Uniprot G2NFJ9) by crystal structure and kinetic analysis on mutants [1].
- First 3-D structure
- Lam55A from P. chrysosporium by X-ray crystallography [10].
References
- Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, and Fox BG. (2015). Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem. 2015;290(19):11819-32. DOI:10.1074/jbc.M114.623579 |
- Pitson SM, Seviour RJ, McDougall BM, Woodward JR, and Stone BA. (1995). Purification and characterization of three extracellular (1-->3)-beta-D-glucan glucohydrolases from the filamentous fungus Acremonium persicinum. Biochem J. 1995;308 ( Pt 3)(Pt 3):733-41. DOI:10.1042/bj3080733 |
- Bara MT, Lima AL, and Ulhoa CJ. (2003). Purification and characterization of an exo-beta-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett. 2003;219(1):81-5. DOI:10.1016/S0378-1097(02)01191-6 |
- de la Cruz J, Pintor-Toro JA, Benítez T, Llobell A, and Romero LC. (1995). A novel endo-beta-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol. 1995;177(23):6937-45. DOI:10.1128/jb.177.23.6937-6945.1995 |
- Nobe R, Sakakibara Y, Fukuda N, Yoshida N, Ogawa K, and Suiko M. (2003). Purification and characterization of laminaran hydrolases from Trichoderma viride. Biosci Biotechnol Biochem. 2003;67(6):1349-57. DOI:10.1271/bbb.67.1349 |
-
Kasahara S, Nakajima T, Miyamoto C, Wada K, Furuichi Y, and Ichishima E. Characterization and mode of action of exo-1,3-β-D-glucanase from Aspergillus saitoi. J Ferment Bioeng 74 (4), 238-240 (1992).DOI:10.1016/0922-338X(92)90118-E
- Nelson TE (1970). The hydrolytic mechanism of an exo-beta-(1--3)-D-glucanase. J Biol Chem. 1970;245(4):869-72. | Google Books | Open Library
-
Nagasaki N, Saito K, and Yarnamoto S. Purification and characterization of an exo-β-l,3-glucanase from a fungi imperfecti. Agric Biol Cbem 41, 493-502 (1977).JOI:JST.Journalarchive/bbb1961/41.493
- Jeffcoat R and Kirkwood S. (1987). Implication of histidine at the active site of exo-beta-(1-3)-D-glucanase from Basidiomycete sp. QM 806. J Biol Chem. 1987;262(3):1088-91. | Google Books | Open Library
- Ishida T, Fushinobu S, Kawai R, Kitaoka M, Igarashi K, and Samejima M. (2009). Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem. 2009;284(15):10100-9. DOI:10.1074/jbc.M808122200 |
- Nikolskaya AN, Pitkin JW, Schaeffer HJ, Ahn JH, and Walton JD. (1998). EXG1p, a novel exo-beta1,3-glucanase from the fungus Cochliobolus carbonum, contains a repeated motif present in other proteins that interact with polysaccharides. Biochim Biophys Acta. 1998;1425(3):632-6. DOI:10.1016/s0304-4165(98)00117-2 |
- Schaeffer HJ, Leykam J, and Walton JD. (1994). Cloning and targeted gene disruption of EXG1, encoding exo-beta 1, 3-glucanase, in the phytopathogenic fungus Cochliobolus carbonum. Appl Environ Microbiol. 1994;60(2):594-8. DOI:10.1128/aem.60.2.594-598.1994 |
- Okazaki K, Nishimura N, Matsuoka F, and Hayakawa S. (2007). Cloning and characterization of the gene encoding endo-beta-1,3-glucanase from Arthrobacter sp. NHB-10. Biosci Biotechnol Biochem. 2007;71(6):1568-71. DOI:10.1271/bbb.70030 |