CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 79"
Harry Brumer (talk | contribs) m |
Harry Brumer (talk | contribs) m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1") |
||
(19 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> | <!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> | ||
− | {{ | + | {{CuratorApproved}} |
− | * [[Author]]: | + | * [[Author]]: [[User:Hitomi Ichinose|Hitomi Ichinose]] and [[User:Satoshi Kaneko|Satoshi Kaneko]] |
− | * [[Responsible Curator]]: | + | * [[Responsible Curator]]: [[User:Satoshi Kaneko|Satoshi Kaneko]] |
---- | ---- | ||
Line 12: | Line 12: | ||
|- | |- | ||
|'''Clan''' | |'''Clan''' | ||
− | |GH- | + | |GH-A |
|- | |- | ||
|'''Mechanism''' | |'''Mechanism''' | ||
− | |retaining | + | |retaining |
|- | |- | ||
|'''Active site residues''' | |'''Active site residues''' | ||
− | | | + | |known |
|- | |- | ||
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | |{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | ||
Line 29: | Line 29: | ||
== Substrate specificities == | == Substrate specificities == | ||
− | + | Family GH79 [[glycoside hydrolases]] are found widely distributed in bacteria and eukaryota including fungi, plants, and animals. The characterized activities of this family include β-glucuronidase (EC [{{EClink}}3.2.1.31 3.2.1.31]) <cite> Eudes2008 </cite>, β-4-''O''-methyl-glucuronidase (EC 3.2.1.-) <cite>Kuroyama2001</cite>, baicalin β-glucuronidase (EC [{{EClink}}3.2.1.167 3.2.1.167]) <cite> Sasaki2000 </cite>, heparanase (EC [{{EClink}}3.2.1.166 3.2.1.166]) <cite> Vlodavsky1999 Toyoshima1999 Kussie1999 Hulett1999 Fairbanks1999 </cite> and hyaluronidase (EC 3.2.1.-) <cite> Nardella2004 </cite>. GH79s are involved in the metabolism of proteoglycans, such as heparan sulfate proteoglycan, chondroitin sulfate proteoglycan, and hyaluronan from animals and arabinogalactan-proteins from higher plants. | |
+ | |||
+ | Some GH79 β-glucuronidases have been shown to release both glucuronic acid (GlcA) and 4-''O''-methyl-GlcA from arabinogalactan proteins <cite> Kuroyama2001 Konishi2008 </cite>. The ''Aspergillus niger'' enzyme shows high activity for 4-''O''-methyl-GlcA residues <cite> Kuroyama2001 </cite>. ''Scutellaria baicalensis'' β-glucuronidase hydrolyzes baicalein 7-''O''-β-glucuronide, which is a major flavone of ''S. baicalensis'' <cite> Sasaki2000 </cite>. Heparanase is an endo-β-glucuronidase that degrades the heparan sulfate side chains of heparan sulfate proteoglycans. Heparanases are found in mammals such as human, mouse (''Mus musculus''), rat (''Rattus norvegicus''), cattle (''Bos indicus''), and chicken (''Gallus gallus''). | ||
== Kinetics and Mechanism == | == Kinetics and Mechanism == | ||
− | + | GH79 β-glucuronidases are [[retaining]] enzymes, as first demonstrated by <sup>1</sup>-NMR studies of the hydrolysis of p-nitrophenyl β-glucuronide by a β-glucuronidase from ''Acidobacterium capsulatum'' <cite> Michikawa2012 </cite>. | |
== Catalytic Residues == | == Catalytic Residues == | ||
− | + | The catalytic residues were first identified in the ''A. capsulatum'' β-glucuronidase as Glu173 ([[general acid/base]]) and Glu287 ([[catalytic nucleophile]]) by trapping of the 2-fluoroglucuronyl-enzyme intermediate and site-directed mutagenesis studies <cite> Michikawa2012 </cite>. | |
== Three-dimensional structures == | == Three-dimensional structures == | ||
− | + | The three-dimensional structure of ''A. capsulatum'' β-glucuronidase solved using X-ray crystallography represented the first structure of an enzyme of GH79 (PDB IDs [{{PDBlink}}3vny 3vny], [{{PDBlink}}3vnz 3vnz], [{{PDBlink}}3vo0 3vo0]) <cite> Michikawa2012 </cite>. The catalytic domain of the enzyme is a (β/α)<sub>8</sub> TIM-barrel fold, as found for all members of [[clan]] GH-A. | |
== Family Firsts == | == Family Firsts == | ||
− | ;First stereochemistry determination: | + | ;First stereochemistry determination: ''Acidobacterium capsulatum'' β-glucuronidase by <sup>1</sup>H-NMR <cite> Michikawa2012 </cite>. |
− | ;First catalytic nucleophile identification: | + | ;First [[catalytic nucleophile]] identification: ''A. capsulatum'' β-glucuronidase by 2-fluoroglucuroic acid labeling and the mutagenesis study <cite> Michikawa2012 </cite>. |
− | ;First general acid/base residue identification: | + | ;First [[general acid/base]] residue identification: ''A. capsulatum'' β-glucuronidase by structural identification and the mutagenesis study <cite> Michikawa2012 </cite>. |
− | ;First 3-D structure: | + | ;First 3-D structure: ''A. capsulatum'' β-glucuronidase (PDB IDs [{{PDBlink}}3vny 3vny], [{{PDBlink}}3vnz 3vnz], [{{PDBlink}}3vo0 3vo0]) <cite> Michikawa2012 </cite>. |
== References == | == References == | ||
<biblio> | <biblio> | ||
− | # | + | #Eudes2008 pmid=18667448 |
− | # | + | #Kuroyama2001 pmid=11423108 |
+ | #Konishi2008 pmid=18377882 | ||
+ | #Sasaki2000 pmid=10858442 | ||
+ | #Michikawa2012 pmid=22367201 | ||
+ | #Vlodavsky1999 pmid=10395325 | ||
+ | #Toyoshima1999 pmid=10446189 | ||
+ | #Kussie1999 pmid=10405343 | ||
+ | #Hulett1999 pmid=10395326 | ||
+ | #Fairbanks1999 pmid=10514423 | ||
+ | #Nardella2004 pmid=14967027 | ||
</biblio> | </biblio> | ||
[[Category:Glycoside Hydrolase Families|GH079]] | [[Category:Glycoside Hydrolase Families|GH079]] |
Latest revision as of 13:17, 18 December 2021
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
Glycoside Hydrolase Family GH79 | |
Clan | GH-A |
Mechanism | retaining |
Active site residues | known |
CAZy DB link | |
https://www.cazy.org/GH79.html |
Substrate specificities
Family GH79 glycoside hydrolases are found widely distributed in bacteria and eukaryota including fungi, plants, and animals. The characterized activities of this family include β-glucuronidase (EC 3.2.1.31) [1], β-4-O-methyl-glucuronidase (EC 3.2.1.-) [2], baicalin β-glucuronidase (EC 3.2.1.167) [3], heparanase (EC 3.2.1.166) [4, 5, 6, 7, 8] and hyaluronidase (EC 3.2.1.-) [9]. GH79s are involved in the metabolism of proteoglycans, such as heparan sulfate proteoglycan, chondroitin sulfate proteoglycan, and hyaluronan from animals and arabinogalactan-proteins from higher plants.
Some GH79 β-glucuronidases have been shown to release both glucuronic acid (GlcA) and 4-O-methyl-GlcA from arabinogalactan proteins [2, 10]. The Aspergillus niger enzyme shows high activity for 4-O-methyl-GlcA residues [2]. Scutellaria baicalensis β-glucuronidase hydrolyzes baicalein 7-O-β-glucuronide, which is a major flavone of S. baicalensis [3]. Heparanase is an endo-β-glucuronidase that degrades the heparan sulfate side chains of heparan sulfate proteoglycans. Heparanases are found in mammals such as human, mouse (Mus musculus), rat (Rattus norvegicus), cattle (Bos indicus), and chicken (Gallus gallus).
Kinetics and Mechanism
GH79 β-glucuronidases are retaining enzymes, as first demonstrated by 1-NMR studies of the hydrolysis of p-nitrophenyl β-glucuronide by a β-glucuronidase from Acidobacterium capsulatum [11].
Catalytic Residues
The catalytic residues were first identified in the A. capsulatum β-glucuronidase as Glu173 (general acid/base) and Glu287 (catalytic nucleophile) by trapping of the 2-fluoroglucuronyl-enzyme intermediate and site-directed mutagenesis studies [11].
Three-dimensional structures
The three-dimensional structure of A. capsulatum β-glucuronidase solved using X-ray crystallography represented the first structure of an enzyme of GH79 (PDB IDs 3vny, 3vnz, 3vo0) [11]. The catalytic domain of the enzyme is a (β/α)8 TIM-barrel fold, as found for all members of clan GH-A.
Family Firsts
- First stereochemistry determination
- Acidobacterium capsulatum β-glucuronidase by 1H-NMR [11].
- First catalytic nucleophile identification
- A. capsulatum β-glucuronidase by 2-fluoroglucuroic acid labeling and the mutagenesis study [11].
- First general acid/base residue identification
- A. capsulatum β-glucuronidase by structural identification and the mutagenesis study [11].
- First 3-D structure
- A. capsulatum β-glucuronidase (PDB IDs 3vny, 3vnz, 3vo0) [11].
References
- Eudes A, Mouille G, Thévenin J, Goyallon A, Minic Z, and Jouanin L. (2008). Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana. Plant Cell Physiol. 2008;49(9):1331-41. DOI:10.1093/pcp/pcn108 |
- Kuroyama H, Tsutsui N, Hashimoto Y, and Tsumuraya Y. (2001). Purification and characterization of a beta-glucuronidase from Aspergillus niger. Carbohydr Res. 2001;333(1):27-39. DOI:10.1016/s0008-6215(01)00114-8 |
- Sasaki K, Taura F, Shoyama Y, and Morimoto S. (2000). Molecular characterization of a novel beta-glucuronidase from Scutellaria baicalensis georgi. J Biol Chem. 2000;275(35):27466-72. DOI:10.1074/jbc.M004674200 |
- Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, and Pecker I. (1999). Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med. 1999;5(7):793-802. DOI:10.1038/10518 |
- Toyoshima M and Nakajima M. (1999). Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem. 1999;274(34):24153-60. DOI:10.1074/jbc.274.34.24153 |
- Kussie PH, Hulmes JD, Ludwig DL, Patel S, Navarro EC, Seddon AP, Giorgio NA, and Bohlen P. (1999). Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun. 1999;261(1):183-7. DOI:10.1006/bbrc.1999.0962 |
- Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, and Parish CR. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5(7):803-9. DOI:10.1038/10525 |
- Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, Slightom JL, Bienkowski MJ, Smith CW, Bannow CA, and Heinrikson RL. (1999). Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem. 1999;274(42):29587-90. DOI:10.1074/jbc.274.42.29587 |
- Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, and Steinkühler C. (2004). Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry. 2004;43(7):1862-73. DOI:10.1021/bi030203a |
- Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T, Kaneko S, Igarashi K, Samejima M, and Tsumuraya Y. (2008). Properties of family 79 beta-glucuronidases that hydrolyze beta-glucuronosyl and 4-O-methyl-beta-glucuronosyl residues of arabinogalactan-protein. Carbohydr Res. 2008;343(7):1191-201. DOI:10.1016/j.carres.2008.03.004 |
- Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S, Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z, and Kaneko S. (2012). Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. J Biol Chem. 2012;287(17):14069-77. DOI:10.1074/jbc.M112.346288 |