CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Jean-Guy Berrin"
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Image:berrin.jpg|200px|right]] This is the user page of '''Jean-Guy Berrin'''. I started working on carbohydrate-active enzymes during my Master studies focusing on the characterization of a fungal [[GH11]] xylanase from ''Aspergillus niger'' <cite>Berrin2000</cite>. During my PhD held at the Institute of Food Research Norwich (UK) under the supervision of Nathalie Juge, I investigated the role of the human beta-glucosidase ([[GH1]]) in the metabolism of flavonoid glycosides through the study of its structure-activity relationships <cite>Tribolo2007 Berrin2003</cite>. After my PhD, I went back to France at the CEA (French Alternative Energies and Atomic Energy Commission) for a post doc on NADH oxidases followed by a post doc at Aix Marseille University on the characterization of fungal [[GH11]] xylanases for food applications (see for example <cite>AndreLeroux2008</cite> and reviews <cite>BerrinJuge2009 Paes2012</cite>). In 2008, I obtained a permanent research scientist position at INRA (Franch National Institute for Agricultural Research, Biotechnology of Filamentous Fungi group, Marseille, France). My main interest is to explore the enzymatic potential of the INRA collection of filamentous fungi (CIRM) to improve plant biomass deconstruction <cite>Couturier2012 Berrin2012</cite>. A large number of genes have been targeted by computational genome analysis and secretomic approaches leading to the characterization of CAZymes from [[GH5]], [[GH6]], [[GH11]], [[GH26]], [[GH45]], [[GH51]], [[GH62]] (see for example <cite>Couturier2011</cite>). I also characterized the first member of the [[GH131]] family <cite>Lafond2012</cite>. More information at [https://www.researchgate.net/profile/Jean-Guy_Berrin/ ResearchGate]. | |
+ | ---- | ||
+ | <biblio> | ||
+ | #AndreLeroux2008 pmid=18384043 | ||
+ | #Berrin2000 pmid=10833405 | ||
+ | #Berrin2003 pmid=12667141 | ||
+ | #Berrin2012 pmid=22773628 | ||
+ | #BerrinJuge2009 pmid=18320143 | ||
+ | #Paes2012 pmid=22067746 | ||
+ | #Couturier2011 pmid=21037302 | ||
+ | #Couturier2012 pmid=22300648 | ||
+ | #Lafond2012 pmid=23023747 | ||
+ | #Tribolo2007 pmid=17555766 | ||
+ | </biblio> | ||
− | + | [[Category:Contributors|Berrin, Jean-Guy]] | |
− | [[Category:Contributors|Berrin,Jean-Guy]] |
Latest revision as of 02:33, 20 January 2013
This is the user page of Jean-Guy Berrin. I started working on carbohydrate-active enzymes during my Master studies focusing on the characterization of a fungal GH11 xylanase from Aspergillus niger [1]. During my PhD held at the Institute of Food Research Norwich (UK) under the supervision of Nathalie Juge, I investigated the role of the human beta-glucosidase (GH1) in the metabolism of flavonoid glycosides through the study of its structure-activity relationships [2, 3]. After my PhD, I went back to France at the CEA (French Alternative Energies and Atomic Energy Commission) for a post doc on NADH oxidases followed by a post doc at Aix Marseille University on the characterization of fungal GH11 xylanases for food applications (see for example [4] and reviews [5, 6]). In 2008, I obtained a permanent research scientist position at INRA (Franch National Institute for Agricultural Research, Biotechnology of Filamentous Fungi group, Marseille, France). My main interest is to explore the enzymatic potential of the INRA collection of filamentous fungi (CIRM) to improve plant biomass deconstruction [7, 8]. A large number of genes have been targeted by computational genome analysis and secretomic approaches leading to the characterization of CAZymes from GH5, GH6, GH11, GH26, GH45, GH51, GH62 (see for example [9]). I also characterized the first member of the GH131 family [10]. More information at ResearchGate.
- Berrin JG, Williamson G, Puigserver A, Chaix JC, McLauchlan WR, and Juge N. (2000). High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2000;19(1):179-87. DOI:10.1006/prep.2000.1229 |
- Tribolo S, Berrin JG, Kroon PA, Czjzek M, and Juge N. (2007). The crystal structure of human cytosolic beta-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J Mol Biol. 2007;370(5):964-75. DOI:10.1016/j.jmb.2007.05.034 |
- Berrin JG, Czjzek M, Kroon PA, McLauchlan WR, Puigserver A, Williamson G, and Juge N. (2003). Substrate (aglycone) specificity of human cytosolic beta-glucosidase. Biochem J. 2003;373(Pt 1):41-8. DOI:10.1042/BJ20021876 |
- André-Leroux G, Berrin JG, Georis J, Arnaut F, and Juge N. (2008). Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design. Proteins. 2008;72(4):1298-307. DOI:10.1002/prot.22029 |
- Berrin JG and Juge N. (2008). Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett. 2008;30(7):1139-50. DOI:10.1007/s10529-008-9669-6 |
- Paës G, Berrin JG, and Beaugrand J. (2012). GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv. 2012;30(3):564-92. DOI:10.1016/j.biotechadv.2011.10.003 |
- Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, and Berrin JG. (2012). Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics. 2012;13:57. DOI:10.1186/1471-2164-13-57 |
- Berrin JG, Navarro D, Couturier M, Olivé C, Grisel S, Haon M, Taussac S, Lechat C, Courtecuisse R, Favel A, Coutinho PM, and Lesage-Meessen L. (2012). Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol. 2012;78(18):6483-90. DOI:10.1128/AEM.01651-12 |
- Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, and Berrin JG. (2011). Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol. 2011;77(1):237-46. DOI:10.1128/AEM.01761-10 |
- Lafond M, Navarro D, Haon M, Couturier M, and Berrin JG. (2012). Characterization of a broad-specificity β-glucanase acting on β-(1,3)-, β-(1,4)-, and β-(1,6)-glucans that defines a new glycoside hydrolase family. Appl Environ Microbiol. 2012;78(24):8540-6. DOI:10.1128/AEM.02572-12 |