CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Carbohydrate Binding Module Family 81"

From CAZypedia
Jump to navigation Jump to search
(Created page with "<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption --> {{UnderConstruct...")
 
Line 17: Line 17:
  
 
== Ligand specificities ==
 
== Ligand specificities ==
Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.
+
The family CBM81 was first described on September 12, 2016 [1]. According to CAZy, another two members were characterized in literature since then. The first CBM81 (named CBM_E1) was identified from sugar cane soil metagenome library [2], as part of a GH5 endoglucanase, where the catalytic module and the CBM are connected by a 32 amino acids (serine-rich) linker. The CBM_E1 interaction with soluble ligands was determined by Isothermal Titration Calorimetry, resulting in the highest affinity with barley β-glucan (Ka of 1.4 x 10-4 M-1), followed by cellohexaose (1.2 x 10-4 M-1), xyloglucan (0.5 x 10-4 M-1) and cellopentaose (0.4 x 10-4 M-1). The protein did not show any affinity for xylan and oligosaccharides such as cellotetraose, mannohexaose, and xylohexaose. The thermodynamic parameters indicated that the CBM_E1 binding to ligands is enthalpically driven, which is a typical characteristic of Type B CBMs [3]. On the other hand, based on pull-down assays with insoluble carbohydrates, the CBM_E1 was able to bind to Avicel, but not to Bacterial Microcrystalline Cellulose (BMCC), which is characteristic of Type A CBMs. The Avicel is composed of about 40% of amorphous regions [4], these disordered regions of the polysaccharide should be the probable CBM_E1 binding region.
 
 
''Note: Here is an example of how to insert references in the text, together with the "biblio" section below:'' Please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. CBMs, in particular, have been extensively reviewed <cite>Boraston2004 Hashimoto2006 Shoseyov2006 Guillen2010</cite>.
 
  
 
== Structural Features ==
 
== Structural Features ==
''Content in this section should include, in paragraph form, a description of:''
+
The CBM81 is the first CBM family to exhibit mixing characteristics from Type A and Type B. The Type A CBMs bind to the surface of crystalline polysaccharides (such as cellulose and chitin) through CH-pi interactions between the aromatic residues and the monosaccharide’s units from carbohydrates [5]. Although the planar surface of this CBM81 member is composed of aromatic residues, similar to Type A CBMs, one of the tryptophans has the indole ring perpendicular to the oligosaccharide chain, leading to a hydrogen bond instead of a hydrophobic interaction. This observation explains the enthalpically driven binding between the CBM and the ligand, defining the classification of CBM_E1 as a Type B.
* '''Fold:''' Structural fold (beta trefoil, beta sandwich, etc.)
 
* '''Type:''' Include here Type A, B, or C and properties
 
* '''Features of ligand binding:''' Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.
 
  
 
== Functionalities ==  
 
== Functionalities ==  
''Content in this section should include, in paragraph form, a description of:''
+
The CBM_E1 was demonstrated to bind amorphous regions of cellulose, as well as beta-glucan, xyloglucan and cello-oligosaccharides. All these ligands are typical substrates of endoglucanases, which are the enzymes linked to the CBM81 members deposited so far. The CBM81 can enhance endoglucanases activity by approximating the catalytic domain to the substrate [6]. However, this effect was not experimentally demonstrated for this family.
* '''Functional role of CBM:''' Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
 
* '''Most Common Associated Modules:''' 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
 
* '''Novel Applications:'''  Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.
 
  
 
== Family Firsts ==
 
== Family Firsts ==
 
;First Identified
 
;First Identified
:Insert archetype here, possibly including ''very brief'' synopsis.
+
:The CBM81 was identified as part of a GH5 endoglucanase, originated from an uncultured microorganism (metagenomics) [1].
 
;First Structural Characterization
 
;First Structural Characterization
:Insert archetype here, possibly including ''very brief'' synopsis.
+
:The first crystal structures of the family CBM81 were from CBM_E1, in absence and presence of the substrate cellopentaose [1].
  
 
== References ==
 
== References ==

Revision as of 15:38, 17 May 2018

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
https://www.cazy.org/CBM81.html

Ligand specificities

The family CBM81 was first described on September 12, 2016 [1]. According to CAZy, another two members were characterized in literature since then. The first CBM81 (named CBM_E1) was identified from sugar cane soil metagenome library [2], as part of a GH5 endoglucanase, where the catalytic module and the CBM are connected by a 32 amino acids (serine-rich) linker. The CBM_E1 interaction with soluble ligands was determined by Isothermal Titration Calorimetry, resulting in the highest affinity with barley β-glucan (Ka of 1.4 x 10-4 M-1), followed by cellohexaose (1.2 x 10-4 M-1), xyloglucan (0.5 x 10-4 M-1) and cellopentaose (0.4 x 10-4 M-1). The protein did not show any affinity for xylan and oligosaccharides such as cellotetraose, mannohexaose, and xylohexaose. The thermodynamic parameters indicated that the CBM_E1 binding to ligands is enthalpically driven, which is a typical characteristic of Type B CBMs [3]. On the other hand, based on pull-down assays with insoluble carbohydrates, the CBM_E1 was able to bind to Avicel, but not to Bacterial Microcrystalline Cellulose (BMCC), which is characteristic of Type A CBMs. The Avicel is composed of about 40% of amorphous regions [4], these disordered regions of the polysaccharide should be the probable CBM_E1 binding region.

Structural Features

The CBM81 is the first CBM family to exhibit mixing characteristics from Type A and Type B. The Type A CBMs bind to the surface of crystalline polysaccharides (such as cellulose and chitin) through CH-pi interactions between the aromatic residues and the monosaccharide’s units from carbohydrates [5]. Although the planar surface of this CBM81 member is composed of aromatic residues, similar to Type A CBMs, one of the tryptophans has the indole ring perpendicular to the oligosaccharide chain, leading to a hydrogen bond instead of a hydrophobic interaction. This observation explains the enthalpically driven binding between the CBM and the ligand, defining the classification of CBM_E1 as a Type B.

Functionalities

The CBM_E1 was demonstrated to bind amorphous regions of cellulose, as well as beta-glucan, xyloglucan and cello-oligosaccharides. All these ligands are typical substrates of endoglucanases, which are the enzymes linked to the CBM81 members deposited so far. The CBM81 can enhance endoglucanases activity by approximating the catalytic domain to the substrate [6]. However, this effect was not experimentally demonstrated for this family.

Family Firsts

First Identified
The CBM81 was identified as part of a GH5 endoglucanase, originated from an uncultured microorganism (metagenomics) [1].
First Structural Characterization
The first crystal structures of the family CBM81 were from CBM_E1, in absence and presence of the substrate cellopentaose [1].

References

  1. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  2. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  3. Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 | PubMed ID:15214846 [Boraston2004]
  4. Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 | PubMed ID:17131061 [Hashimoto2006]
  5. Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 | PubMed ID:16760304 [Shoseyov2006]
  6. Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y | PubMed ID:19908036 [Guillen2010]

All Medline abstracts: PubMed