CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 106"
Harry Brumer (talk | contribs) (Added page template for Ana Luis (author) and Harry Gilbert (curator)) |
|||
Line 12: | Line 12: | ||
|- | |- | ||
|'''Clan''' | |'''Clan''' | ||
− | | | + | |none |
|- | |- | ||
|'''Mechanism''' | |'''Mechanism''' | ||
− | | | + | |inverting |
|- | |- | ||
|'''Active site residues''' | |'''Active site residues''' | ||
− | | | + | |known |
|- | |- | ||
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | |{{Hl2}} colspan="2" align="center" |'''CAZy DB link''' | ||
Line 29: | Line 29: | ||
== Substrate specificities == | == Substrate specificities == | ||
− | + | The glycoside hydrolases of this family are alfa L-rhamnosidases ([http://www.enzyme-database.org/query.php?ec=3.2.1.40 EC 3.2.1.40]). The first GH106 characterized was Rham from ''Sphingomonas paucimobilis'' FP2001. This enzyme showed activity against p-nitrophenyl α-L-rhamnopyranoside. More recently, two Bacteroides thetaiotaomicron enzymes (BT0986 and BT4145) have been characterized. These enzymes are exo active against linkages present in pectin polysaccharides. BT0986 cleaves the L-Rha-a-1,2-L-Arap linkage in the terminal region of Chain B of rhamnogalacturonan II. The enzyme BT4145 targets the L-Rha-a-1,4-D-GalA linkage in the backbone of rhamnogalacturonan I. All of genes encoding family 106 members are found in bacteria. | |
− | |||
− | |||
In the meantime, please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. | In the meantime, please see these references for an essential introduction to the CAZy classification system: <cite>DaviesSinnott2008 Cantarel2009</cite>. | ||
Line 52: | Line 50: | ||
== References == | == References == | ||
<biblio> | <biblio> | ||
− | # | + | # Miyata2005 Miyata T, Kashige N, Satho T, Yamaguchi T, Aso Y and Miake F.Cloning (2005) Sequence analysis, and expression of the gene encoding ''Sphingomonas paucimobilis'' FP2001 alpha-L-rhamnosidase. ''Curr Microbiol'', vol 51, no. 2., pp. 105-109. |
− | + | #Ndeh2017 pmid=28329766 | |
+ | #Luis2018 pmid=29255254 | ||
</biblio> | </biblio> | ||
[[Category:Glycoside Hydrolase Families|GH106]] | [[Category:Glycoside Hydrolase Families|GH106]] |
Revision as of 14:07, 11 February 2018
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Ana Luis^^^
- Responsible Curator: ^^^Harry Gilbert^^^
Glycoside Hydrolase Family GH106 | |
Clan | none |
Mechanism | inverting |
Active site residues | known |
CAZy DB link | |
https://www.cazy.org/GH106.html |
Substrate specificities
The glycoside hydrolases of this family are alfa L-rhamnosidases (EC 3.2.1.40). The first GH106 characterized was Rham from Sphingomonas paucimobilis FP2001. This enzyme showed activity against p-nitrophenyl α-L-rhamnopyranoside. More recently, two Bacteroides thetaiotaomicron enzymes (BT0986 and BT4145) have been characterized. These enzymes are exo active against linkages present in pectin polysaccharides. BT0986 cleaves the L-Rha-a-1,2-L-Arap linkage in the terminal region of Chain B of rhamnogalacturonan II. The enzyme BT4145 targets the L-Rha-a-1,4-D-GalA linkage in the backbone of rhamnogalacturonan I. All of genes encoding family 106 members are found in bacteria.
In the meantime, please see these references for an essential introduction to the CAZy classification system: [1, 2].
Kinetics and Mechanism
Content is to be added here.
Catalytic Residues
Content is to be added here.
Three-dimensional structures
Content is to be added here.
Family Firsts
- First stereochemistry determination
- Content is to be added here.
- First catalytic nucleophile identification
- Content is to be added here.
- First general acid/base residue identification
- Content is to be added here.
- First 3-D structure
- Content is to be added here.
References
-
Miyata T, Kashige N, Satho T, Yamaguchi T, Aso Y and Miake F.Cloning (2005) Sequence analysis, and expression of the gene encoding Sphingomonas paucimobilis FP2001 alpha-L-rhamnosidase. Curr Microbiol, vol 51, no. 2., pp. 105-109.
- Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 |
- Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, and Gilbert HJ. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018;3(2):210-219. DOI:10.1038/s41564-017-0079-1 |