CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Polysaccharide Lyase Family 6"

From CAZypedia
Jump to navigation Jump to search
Line 54: Line 54:
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
 
 
</biblio>
 
</biblio>
  
 
[[Category:Polysaccharide Lyase Families|PL006]]
 
[[Category:Polysaccharide Lyase Families|PL006]]

Revision as of 04:06, 6 June 2019

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Polysaccharide Lyase Family 6
3D structure parralel β-helix
Mechanism β-elimination
Charge neutralizer calcium or water
Active site residues known
CAZy DB link
https://www.cazy.org/PL6.html


Substrate specificities

PL6 currently contains 3 subfamilies [1] all of which contain members catalyzing the depolymerisation of alginate [2]. Alginate consisting of 1,4 linked β-D-mannuronic acid and α-L-guluronic acid arranged in poly-mannuronic acid blocks, poly-guluronic acid blocks or poly-mannuronic/guluronic acid blocks [3, 4]. Subfamily 2 and 3 have so far only shown specificity for poly-mannuronic/guluronic acid blocks [2], while subfamily 1 has been demonstrated to depolymerize poly-guluronic acid [5, 6], poly-mannuronic acid [7], poly-mannuronic/guluronic acid [2] as well as dermatan sulfate (formerly chrondroitin B) [2, 8, 9].


Kinetics and Mechanism

Figure 1. Syn – or anti – β-elimination catalyzed by PL6 enzymes acting on alginate. M represents mannuronic acid and G guluronic acid. n represents the continued sugar chain.

The β-elimination catalyzed by the PL6 enzymes results in the formation of a C4-C5 unsaturated sugar at the new non-reducing end. The first step is the neutralization of the acid group in the +1 subsite by a calcium [6, 9] or by water [5]. This lowers the pKa value of the C5-proton allowing for abstraction by the catalytic base (Figure 1). A catalytic acid then donates a proton to the glycosidic linkage resulting in the β-elimination. This can be done in syn with the acid and base on the same side of the sugar ring in the transition state (the case for D-mannuronic acid) or anti where they are on opposite sides of the sugar ring (the case for L-guluronic acid) [10, 11].

Catalytic Residues

Content is to be added here.

Three-dimensional structures

Content is to be added here.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. []