CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 151"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
  
 
== Substrate specificities ==
 
== Substrate specificities ==
Content is to be added here.
+
Members of GH151 have α-L-fucosidase activity (EC 3.2.1.51) <cite>Sela2012 Benesova2015 Lezyk2016</cite>. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (pNP-α-L-Fuc) <cite>Benesova2015 Lezyk2016</cite> and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) <cite>Sela2012</cite>. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) <cite>Sela2012 Lezyk2016</cite>, but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal <cite>Sela2012</cite>. No activity was observed on fucosylated xyloglucan <cite>Lezyk2016</cite>.
  
Members of GH151 have α-L-fucosidase activity <cite>Sela2012 Benesova2015 Lezyk2016</cite>.
+
== Kinetics and Mechanism ==
  
== Kinetics and Mechanism ==
+
The mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using pNP-α-L-Fuc as donor substrate <cite>Benesova2015 Lezyk2016</cite>, a retaining mechanism has been inferred.
Content is to be added here.
 
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Content is to be added here.
+
The catalytic residues of GH151 are unknown.
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Content is to be added here.
+
No three-dimensional structures have been solved for GH151.
  
 
== Family Firsts ==
 
== Family Firsts ==

Revision as of 01:14, 4 June 2020

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH151
Clan None
Mechanism Retaining (inferred)
Active site residues Not known
CAZy DB link
https://www.cazy.org/GH151.html


Substrate specificities

Members of GH151 have α-L-fucosidase activity (EC 3.2.1.51) [1, 2, 3]. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (pNP-α-L-Fuc) [2, 3] and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) [1]. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) [1, 3], but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal [1]. No activity was observed on fucosylated xyloglucan [3].

Kinetics and Mechanism

The mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using pNP-α-L-Fuc as donor substrate [2, 3], a retaining mechanism has been inferred.

Catalytic Residues

The catalytic residues of GH151 are unknown.

Three-dimensional structures

No three-dimensional structures have been solved for GH151.

Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, and Mills DA. (2012). Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78(3):795-803. DOI:10.1128/AEM.06762-11 | PubMed ID:22138995 [Sela2012]
  2. Benešová E, Lipovová P, Krejzová J, Kovaľová T, Buchtová P, Spiwok V, and Králová B. (2015). Alpha-L-fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus. BMC Biotechnol. 2015;15:36. DOI:10.1186/s12896-015-0160-x | PubMed ID:26013545 [Benesova2015]
  3. Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, and Mikkelsen JD. (2016). Novel α-L-Fucosidases from a Soil Metagenome for Production of Fucosylated Human Milk Oligosaccharides. PLoS One. 2016;11(1):e0147438. DOI:10.1371/journal.pone.0147438 | PubMed ID:26800369 [Lezyk2016]

All Medline abstracts: PubMed