CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "User:Mario Murakami"

From CAZypedia
Jump to navigation Jump to search
Line 1: Line 1:
 
[[Image:Murakami.jpg|300px|right]]
 
[[Image:Murakami.jpg|300px|right]]
  
Mario Murakami is the scientific director of the Brazilian Biorenewables National Laboratory (since 2018) and former coordinator of the macromolecular crystallography village at the Brazilian National Center for Research in Energy and Materials (2010-2017). He obtained Ph.D. degree in molecular biophysics (2006) from the State University of São Paulo with a split Ph.D. at the University of Hamburg and German Electron Synchrotron DESY. He worked with the structural elucidation of macromolecular complexes involved in the inhibition and activation of enzymes during his post-docs at UNESP and Rutgers University. His current research interests encompass the discovery and mechanistic understanding of CAZymes and the genetic engineering of filamentous fungi for enzyme production. He has contributed to structure and function studies of CAZymes from families GH1 <cite>Giuseppe2012, Crespim2016, Santos2016, Zanphorlin2016, Toyama2018, Santos2019</cite>, GH2 <cite>Domingues2018</cite>, GH5 <cite>Santos2012a, Santos2012b, Alvarez2013, Santos2015, Riuz2016, Rosa2019</cite>, GH7, GH8, GH10, GH11, GH12, GH22, GH39, GH43, GH42 GH45, GH51, GH54, GH57, GH128 and AA9. Recently, his group rationally engineered a publicly available strain (Trichoderma reesei RUT-C30), which can produce more than 80 g/L of secreted proteins, mostly CAZymes, using a low-cost bioprocess.
+
Mario Murakami is the scientific director of the Brazilian Biorenewables National Laboratory (since 2018) and former coordinator of the macromolecular crystallography village at the Brazilian National Center for Research in Energy and Materials (2010-2017). He obtained Ph.D. degree in molecular biophysics (2006) from the State University of São Paulo with a split Ph.D. at the University of Hamburg and German Electron Synchrotron DESY. He worked with the structural elucidation of macromolecular complexes involved in the inhibition and activation of enzymes during his post-docs at UNESP and Rutgers University. His current research interests encompass the discovery and mechanistic understanding of CAZymes and the genetic engineering of filamentous fungi for enzyme production. He has contributed to structure and function studies of CAZymes from families GH1 <cite>Giuseppe2012, Crespim2016, Santos2016, Zanphorlin2016, Toyama2018, Santos2019</cite>, GH2 <cite>Domingues2018</cite>, GH5 <cite>Santos2012a, Santos2012b, Alvarez2013a, Santos2015, Riuz2016, Rosa2019</cite>, GH7 <cite>Segato2012</cite>, GH8 <cite>Scapin2017</cite>, GH10 <cite>Santos2010, Alvarez2013b, Santos2014</cite>, GH11<cite>Murakami2005, Ribeiro2011, Diogo2015, Hoffmam2016 </cite>, GH12<cite>Scapin2017</cite>, GH22<cite>Scapin2017</cite>, GH39<cite>Scapin2017</cite>, GH43<cite>Scapin2017</cite>, GH42<cite>Scapin2017</cite>, GH45<cite>Scapin2017</cite>, GH51<cite>Scapin2017</cite>, GH54<cite>Scapin2017</cite>, GH57<cite>Scapin2017</cite>, GH128 <cite>Scapin2017</cite>and AA9<cite>Scapin2017</cite>. Recently, his group rationally engineered a publicly available strain (Trichoderma reesei RUT-C30), which can produce more than 80 g/L of secreted proteins, mostly CAZymes, using a low-cost bioprocess.
  
 
----
 
----
Line 25: Line 25:
 
#Santos2012b pmid=21880019
 
#Santos2012b pmid=21880019
  
#Alvarez2013 pmid=24358302
+
#Alvarez2013a pmid=24358302
  
 
#Santos2015 pmid=25714929
 
#Santos2015 pmid=25714929
Line 32: Line 32:
  
 
#Rosa2019 pmid=30641082
 
#Rosa2019 pmid=30641082
 +
 +
#Segato2012 pmid=22494694
 +
 +
#Scapin2017 pmid=28448629
 +
 +
#Santos2010 pmid=21070746
 +
 +
#Alvarez2013b pmid=23922891
 +
 +
#Santos2014 pmid=25266726
 +
 +
#Murakami2005 pmid=16289057
 +
 +
#Ribeiro2011 pmid=22006920
 +
 +
#Diogo2015 pmid=25640722
 +
 +
#Hoffmam2016 pmid=26923808
 +
 +
  
  

Revision as of 01:48, 17 June 2020

Murakami.jpg

Mario Murakami is the scientific director of the Brazilian Biorenewables National Laboratory (since 2018) and former coordinator of the macromolecular crystallography village at the Brazilian National Center for Research in Energy and Materials (2010-2017). He obtained Ph.D. degree in molecular biophysics (2006) from the State University of São Paulo with a split Ph.D. at the University of Hamburg and German Electron Synchrotron DESY. He worked with the structural elucidation of macromolecular complexes involved in the inhibition and activation of enzymes during his post-docs at UNESP and Rutgers University. His current research interests encompass the discovery and mechanistic understanding of CAZymes and the genetic engineering of filamentous fungi for enzyme production. He has contributed to structure and function studies of CAZymes from families GH1 [1, 2, 3, 4, 5, 6], GH2 [7], GH5 [8, 9, 10, 11, 12, 13], GH7 [14], GH8 [15], GH10 [16, 17, 18], GH11[19, 20, 21, 22], GH12[15], GH22[15], GH39[15], GH43[15], GH42[15], GH45[15], GH51[15], GH54[15], GH57[15], GH128 [15]and AA9[15]. Recently, his group rationally engineered a publicly available strain (Trichoderma reesei RUT-C30), which can produce more than 80 g/L of secreted proteins, mostly CAZymes, using a low-cost bioprocess.


  1. de Giuseppe PO, Souza Tde A, Souza FH, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Furriel Rdos P, and Murakami MT. (2014). Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 6):1631-9. DOI:10.1107/S1399004714006920 | PubMed ID:24914974 [Giuseppe2012]
  2. Crespim E, Zanphorlin LM, de Souza FH, Diogo JA, Gazolla AC, Machado CB, Figueiredo F, Sousa AS, Nóbrega F, Pellizari VH, Murakami MT, and Ruller R. (2016). A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. Int J Biol Macromol. 2016;82:375-80. DOI:10.1016/j.ijbiomac.2015.09.018 | PubMed ID:26475230 [Crespim2016]
  3. Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC, Ruller R, Horta MAC, Murakami MT, and de Souza AP. (2016). Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels. 2016;9:71. DOI:10.1186/s13068-016-0487-0 | PubMed ID:27006690 [Santos2016]
  4. Zanphorlin LM, de Giuseppe PO, Honorato RV, Tonoli CC, Fattori J, Crespim E, de Oliveira PS, Ruller R, and Murakami MT. (2016). Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci Rep. 2016;6:23776. DOI:10.1038/srep23776 | PubMed ID:27029646 [Zanphorlin2016]
  5. Toyama D, de Morais MAB, Ramos FC, Zanphorlin LM, Tonoli CCC, Balula AF, de Miranda FP, Almeida VM, Marana SR, Ruller R, Murakami MT, and Henrique-Silva F. (2018). A novel β-glucosidase isolated from the microbial metagenome of Lake Poraquê (Amazon, Brazil). Biochim Biophys Acta Proteins Proteom. 2018;1866(4):569-579. DOI:10.1016/j.bbapap.2018.02.001 | PubMed ID:29454992 [Toyama2018]
  6. Santos CA, Morais MAB, Terrett OM, Lyczakowski JJ, Zanphorlin LM, Ferreira-Filho JA, Tonoli CCC, Murakami MT, Dupree P, and Souza AP. (2019). An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci Rep. 2019;9(1):4903. DOI:10.1038/s41598-019-41300-3 | PubMed ID:30894609 [Santos2019]
  7. Domingues MN, Souza FHM, Vieira PS, de Morais MAB, Zanphorlin LM, Dos Santos CR, Pirolla RAS, Honorato RV, de Oliveira PSL, Gozzo FC, and Murakami MT. (2018). Structural basis of exo-β-mannanase activity in the GH2 family. J Biol Chem. 2018;293(35):13636-13649. DOI:10.1074/jbc.RA118.002374 | PubMed ID:29997257 [Domingues2018]
  8. dos Santos CR, Paiva JH, Meza AN, Cota J, Alvarez TM, Ruller R, Prade RA, Squina FM, and Murakami MT. (2012). Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. J Struct Biol. 2012;177(2):469-76. DOI:10.1016/j.jsb.2011.11.021 | PubMed ID:22155669 [Santos2012a]
  9. Santos CR, Paiva JH, Sforça ML, Neves JL, Navarro RZ, Cota J, Akao PK, Hoffmam ZB, Meza AN, Smetana JH, Nogueira ML, Polikarpov I, Xavier-Neto J, Squina FM, Ward RJ, Ruller R, Zeri AC, and Murakami MT. (2012). Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem J. 2012;441(1):95-104. DOI:10.1042/BJ20110869 | PubMed ID:21880019 [Santos2012b]
  10. Alvarez TM, Paiva JH, Ruiz DM, Cairo JP, Pereira IO, Paixão DA, de Almeida RF, Tonoli CC, Ruller R, Santos CR, Squina FM, and Murakami MT. (2013). Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One. 2013;8(12):e83635. DOI:10.1371/journal.pone.0083635 | PubMed ID:24358302 [Alvarez2013a]
  11. Dos Santos CR, Cordeiro RL, Wong DW, and Murakami MT. (2015). Structural basis for xyloglucan specificity and α-d-Xylp(1 → 6)-D-Glcp recognition at the -1 subsite within the GH5 family. Biochemistry. 2015;54(10):1930-42. DOI:10.1021/acs.biochem.5b00011 | PubMed ID:25714929 [Santos2015]
  12. Cordeiro RL, Pirolla RAS, Persinoti GF, Gozzo FC, de Giuseppe PO, and Murakami MT. (2019). N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist β-Mannosidase. J Mol Biol. 2019;431(4):732-747. DOI:10.1016/j.jmb.2018.12.017 | PubMed ID:30641082 [Rosa2019]
  13. Segato F, Damasio AR, Gonçalves TA, Murakami MT, Squina FM, Polizeli M, Mort AJ, and Prade RA. (2012). Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnol Biofuels. 2012;5:21. DOI:10.1186/1754-6834-5-21 | PubMed ID:22494694 [Segato2012]
  14. Scapin SMN, Souza FHM, Zanphorlin LM, de Almeida TS, Sade YB, Cardoso AM, Pinheiro GL, and Murakami MT. (2017). Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PLoS One. 2017;12(4):e0176550. DOI:10.1371/journal.pone.0176550 | PubMed ID:28448629 [Scapin2017]
  15. Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, and Murakami MT. (2010). Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1. Biochem Biophys Res Commun. 2010;403(2):214-9. DOI:10.1016/j.bbrc.2010.11.010 | PubMed ID:21070746 [Santos2010]
  16. Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira Pereira I, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira Neto M, Murakami MT, and Squina FM. (2013). Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One. 2013;8(7):e70014. DOI:10.1371/journal.pone.0070014 | PubMed ID:23922891 [Alvarez2013b]
  17. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, and Murakami MT. (2014). Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. J Biol Chem. 2014;289(46):32186-32200. DOI:10.1074/jbc.M114.605105 | PubMed ID:25266726 [Santos2014]
  18. Murakami MT, Arni RK, Vieira DS, Degrève L, Ruller R, and Ward RJ. (2005). Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett. 2005;579(28):6505-10. DOI:10.1016/j.febslet.2005.10.039 | PubMed ID:16289057 [Murakami2005]
  19. Ribeiro LF, Furtado GP, Lourenzoni MR, Costa-Filho AJ, Santos CR, Nogueira SC, Betini JA, Polizeli Mde L, Murakami MT, and Ward RJ. (2011). Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance. J Biol Chem. 2011;286(50):43026-38. DOI:10.1074/jbc.M111.253419 | PubMed ID:22006920 [Ribeiro2011]
  20. Diogo JA, Hoffmam ZB, Zanphorlin LM, Cota J, Machado CB, Wolf LD, Squina F, Damásio AR, Murakami MT, and Ruller R. (2015). Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Enzyme Microb Technol. 2015;69:31-7. DOI:10.1016/j.enzmictec.2014.11.006 | PubMed ID:25640722 [Diogo2015]
  21. Hoffmam ZB, Zanphorlin LM, Cota J, Diogo JA, Almeida GB, Damásio AR, Squina F, Murakami MT, and Ruller R. (2016). Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. N Biotechnol. 2016;33(4):467-72. DOI:10.1016/j.nbt.2016.02.006 | PubMed ID:26923808 [Hoffmam2016]
  22. Ruiz DM, Turowski VR, and Murakami MT. (2016). Effects of the linker region on the structure and function of modular GH5 cellulases. Sci Rep. 2016;6:28504. DOI:10.1038/srep28504 | PubMed ID:27334041 [Ruiz2016]

All Medline abstracts: PubMed