CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 104"

From CAZypedia
Jump to navigation Jump to search
m
Line 12: Line 12:
 
|-
 
|-
 
|'''Clan'''     
 
|'''Clan'''     
|GH-x
+
|none
 
|-
 
|-
 
|'''Mechanism'''
 
|'''Mechanism'''
|retaining/inverting
+
|retaining
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|known/not known
+
|known
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 27: Line 27:
 
<!-- This is the end of the table -->
 
<!-- This is the end of the table -->
  
 +
[[Image:LTreaction.jpg|thumb|right|'''Figure 1.''' Reaction catalyzed by family GH104 enzymes. LT, lytic transglycosylase.  (''click to enlarge'').]]The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of bacteriophage origin and they constitute family 4 of the classification scheme of Blackburn and Clarke <cite>1</cite>.  The prototype for this family is the enzyme from ''lambda'' phage. 
  
== Substrate specificities ==
+
These enzymes cleave the β-1,4 linkage between ''N''-acetylmuramoyl and ''N''-acetylglucosaminyl residues in peptidoglycan (Figure 1).  No other activities have been observed.
Content is to be added here.
 
 
 
This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below).  Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>. You can even cite books using just the ISBN <cite>3</cite>.  References that are not in PubMed can be typed in by hand <cite>MikesClassic</cite>. 
 
  
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Content is to be added here.
+
The lytic transglycosidases, strictly speaking, are retaining enzymes.  However, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product (Figure 1) thus lacking a reducing end <cite>2</cite>.  No detailed analyses involving either steady state or pre-steady state kinetic studies have been reported.
  
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Content is to be added here.
+
[[Image:Mltamechanism.jpg|thumb|right|'''Figure 2.''' Reaction mechanism proposed for ''E. coli'' MltA.  (''click to enlarge'').]]As with other lytic transglycosylases (families [[GH23]], [[GH102]], and [[GH103]]), the GH104 enzymes are thought to possess a single catalytic acid/base residue.  This residue in ''lambda'' phage lytic transglycosylase has been inferred by X-ray crystallography as Glu19 <cite>3</cite>.  The mechanism of action of the family GH104 enzymes has not been investigated and thus it is not known if they follow that of the lytic transglycosylases of families [[GH23]], [[GH102]], or [[GH103]].
  
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Content is to be added here.
+
The three-dimensional structure of only the lambda phage enzyme has been solved  <cite>4</cite>, and like the other lytic transglycosylases of families [[GH23]], and [[GH103]], it possesses the well characterized α+β “lysozyme fold.
  
  
Line 54: Line 52:
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
#Comfort2007 pmid=17323919
+
#1 pmid=11139297
#He1999 pmid=9312086
+
#2 pmid=357
#3 isbn=978-0-240-52118-3
+
#3 pmid=11341831
#MikesClassic Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. [http://dx.doi.org/10.1021/cr00105a006 DOI: 10.1021/cr00105a006]
 
  
 
</biblio>
 
</biblio>

Revision as of 20:49, 20 February 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan none
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GHnn.html
Figure 1. Reaction catalyzed by family GH104 enzymes. LT, lytic transglycosylase. (click to enlarge).

The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of bacteriophage origin and they constitute family 4 of the classification scheme of Blackburn and Clarke [1]. The prototype for this family is the enzyme from lambda phage.

These enzymes cleave the β-1,4 linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues in peptidoglycan (Figure 1). No other activities have been observed.


Kinetics and Mechanism

The lytic transglycosidases, strictly speaking, are retaining enzymes. However, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product (Figure 1) thus lacking a reducing end [2]. No detailed analyses involving either steady state or pre-steady state kinetic studies have been reported.


Catalytic Residues

Figure 2. Reaction mechanism proposed for E. coli MltA. (click to enlarge).

As with other lytic transglycosylases (families GH23, GH102, and GH103), the GH104 enzymes are thought to possess a single catalytic acid/base residue. This residue in lambda phage lytic transglycosylase has been inferred by X-ray crystallography as Glu19 [3]. The mechanism of action of the family GH104 enzymes has not been investigated and thus it is not known if they follow that of the lytic transglycosylases of families GH23, GH102, or GH103.


Three-dimensional structures

The three-dimensional structure of only the lambda phage enzyme has been solved [4], and like the other lytic transglycosylases of families GH23, and GH103, it possesses the well characterized α+β “lysozyme fold.”


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [5].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [6].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [7].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [3].

References

  1. Blackburn NT and Clarke AJ. (2001). Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol. 2001;52(1):78-84. DOI:10.1007/s002390010136 | PubMed ID:11139297 [1]
  2. Höltje JV, Mirelman D, Sharon N, and Schwarz U. (1975). Novel type of murein transglycosylase in Escherichia coli. J Bacteriol. 1975;124(3):1067-76. DOI:10.1128/jb.124.3.1067-1076.1975 | PubMed ID:357 [2]
  3. Leung AK, Duewel HS, Honek JF, and Berghuis AM. (2001). Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry. 2001;40(19):5665-73. DOI:10.1021/bi0028035 | PubMed ID:11341831 [3]

All Medline abstracts: PubMed