CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 23"

From CAZypedia
Jump to navigation Jump to search
Line 31: Line 31:
 
The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of both bacterial and bacteriophage origin, and family G lysozymes (EC 3.2.1.17;  muramidase, peptidoglycan N-acetylmuramoylhydrolase, 1,4-β-N-acetylmuramidase, N-acetylmuramoylhydrolase) of eukaryotic origin.  Both of these enzymes are active on peptidoglycan, but only the lysozymes are active on chitin and chitooligosaccharides.  No other activities have been observed.
 
The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of both bacterial and bacteriophage origin, and family G lysozymes (EC 3.2.1.17;  muramidase, peptidoglycan N-acetylmuramoylhydrolase, 1,4-β-N-acetylmuramidase, N-acetylmuramoylhydrolase) of eukaryotic origin.  Both of these enzymes are active on peptidoglycan, but only the lysozymes are active on chitin and chitooligosaccharides.  No other activities have been observed.
  
This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below).  Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>.  You can even cite books using just the ISBN <cite>3</cite>.  References that are not in PubMed can be typed in by hand <cite>MikesClassic</cite>. 
 
  
  
Line 52: Line 51:
  
 
== References ==
 
== References ==
 +
This is an example of how to make references to a journal article <cite>Comfort2007</cite>. (See the References section below).  Multiple references can go in the same place like this <cite>Comfort2007 He1999</cite>.  You can even cite books using just the ISBN <cite>3</cite>.  References that are not in PubMed can be typed in by hand <cite>MikesClassic</cite>. 
 +
 +
 
<biblio>
 
<biblio>
 
#Comfort2007 pmid=17323919
 
#Comfort2007 pmid=17323919

Revision as of 05:11, 17 February 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining/inverting
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GHnn.html


Substrate specificities

The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of both bacterial and bacteriophage origin, and family G lysozymes (EC 3.2.1.17; muramidase, peptidoglycan N-acetylmuramoylhydrolase, 1,4-β-N-acetylmuramidase, N-acetylmuramoylhydrolase) of eukaryotic origin. Both of these enzymes are active on peptidoglycan, but only the lysozymes are active on chitin and chitooligosaccharides. No other activities have been observed.


Kinetics and Mechanism

The enzymes of this family cleave the β-1,4 linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues in peptidoglycan (Figure 1) . Only the lysozymes of this family are capable of releasing N-acetyl-d-glucosamine residues from chitodextrins, and neither catalyze (inter) transglycosylation reactions. The mechanism of the family G lysozymes has not been determined experimentally, but theoretical considerations based on crystallographic data [1] and modeling studies [2] suggest that they are inverting enzymes. On the other hand, the lytic transglycosidases, strictly speaking, are retaining enzymes. However, unlike lysozyme, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product thus lacking a reducing end [3]. The lytic transglycosylases require the peptide side chains in peptidoglycan for activity, accounting for their inactivity against chitin or chitooligosaccharides [4]. No detailed analyses involving both steady state and pre-steady state kinetic studies have been reported.


Catalytic Residues

Unlike most other glycoside hydrolases, the family GH23 enzymes have only a single identified catalytic residue at their catalytic centre. The identity of the catalytic acid/base residue of the lysozymes was first inferred by X-ray crystallography of goose egg-white lysozyme (GEWL) as Glu 73[5,6]. Likewise, analysis of the crystal structure of the soluble lytic transglycosylase 70 (Slt70) from Escherichia coli identified Glu as the lone catalytic residue[7]. Indeed, replacement of each respective residue results in loss of catalytic activity [8]. The mechanism of action of family GH23 enzymes has yet to be proven experimentally but examination of crystal structures and theoretical considerations has led to separate proposals for the two classes of enzymes. Based on the complexes formed with 1,6-anhydromuropeptide [9] or bulgecin [10], a substrate-assisted mechanism, analogous to the family GH18 chitinases and chitobiases and family GH20 N-acetyl-β-hexosaminidases, has been invoked for the lytic transglycosyales. Thus, the catalytic Glu73 is proposed to serve initially as an acid catalyst to donate a proton to the glycosidic oxygen of the linkage to be cleaved leading to the formation of an intermediate with oxocarbenium ion character (Figure 2). In the absence of an anion/nucleophile in close proximity to stabilize this oxocarbenium intermediate, the lytic transglycosylases would employ anchimeric assistance of the MurNAc 2-acetamido group resulting in the formation an oxazolinium ion intermediate. This would be followed by abstraction of the C-6 hydroxyl proton of the oxazolinium species involving Glu73 which now serves as the base catalyst leading to nucleophilic attack and the formation of 1,6-anhydromuramic acid product.

Three-dimensional structures

Content is to be added here.


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [1].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [2].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [3].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [4].

References

This is an example of how to make references to a journal article [1]. (See the References section below). Multiple references can go in the same place like this [1, 3]. You can even cite books using just the ISBN [4]. References that are not in PubMed can be typed in by hand [2].


  1. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  2. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [MikesClassic]
  3. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  4. Robert V. Stick and Spencer J. Williams. (2009) Carbohydrates. Elsevier Science. [3]

All Medline abstracts: PubMed