CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 130"
Line 29: | Line 29: | ||
== Substrate specificities == | == Substrate specificities == | ||
− | Family [[GH130]] contains [[phosphorylases]] that catalyze the phosphorolysis of β-mannosidic linkages at the non-reducing end of substrates. The family was created based on the identification of 4-''O''-β-D-mannosyl-D-glucose phosphorylase activity (EC [{{EClink}}2.4.1.281 2.4.1.281]) for the protein derived from the gene BF0772 of ''Bacteroides fragilis'' <cite>Senoura2011</cite>. Other activities within the family include: β-1,4-mannooligosaccharide phosphorylase (EC [{{EClink}}2.4.1.319 2.4.1.319]) from ''Ruminococcus albus'' <cite>Kawahara2012</cite>, 1,4-β-mannosyl-''N''-acetylglucosamine phosphorylase (EC [{{EClink}}2.4.1.320 2.4.1.320]), 1,2-β-oligomannan phosphorylase from ''Thermoanaerobacter'' sp. X-514 <cite>Chiku2014</cite>, and β-1,2-mannnobiose phosphorylase from ''Thermoanaerobacter'' sp. X-514 <cite>Chiku2014</cite>. | + | Family [[GH130]] contains [[phosphorylases]] that catalyze the phosphorolysis of β-mannosidic linkages at the non-reducing end of substrates. The family was created based on the identification of 4-''O''-β-D-mannosyl-D-glucose phosphorylase activity (EC [{{EClink}}2.4.1.281 2.4.1.281]) for the protein derived from the gene BF0772 of ''Bacteroides fragilis'' <cite>Senoura2011</cite>. Other activities within the family include: β-1,4-mannooligosaccharide phosphorylase (EC [{{EClink}}2.4.1.319 2.4.1.319]) from ''Ruminococcus albus'' <cite>Kawahara2012</cite>, 1,4-β-mannosyl-''N''-acetylglucosamine phosphorylase (EC [{{EClink}}2.4.1.320 2.4.1.320]) of unknown human gut bacterium mannoside phosphorylase (UhgbMP) <cite>Ladeveze2013</cite>, 1,2-β-oligomannan phosphorylase from ''Thermoanaerobacter'' sp. X-514 <cite>Chiku2014</cite>, and β-1,2-mannnobiose phosphorylase from ''Thermoanaerobacter'' sp. X-514 <cite>Chiku2014</cite>. |
+ | |||
== Kinetics and Mechanism == | == Kinetics and Mechanism == | ||
GH130 phosphorylases phosphorolyze β-mannosidic linkage at the non-reducing end of substrates with net [[inverting|inversion]] of anomeric configuration affording α-mannose-1-phosphate. Senoura et al. <cite>Senoura2011</cite> demonstrated that 4-''O''-β-D-mannosyl-D-glucose phosphorylase from ''Bacteroides fragilis'' (BfMGP) produces α-mannose 1-phosphate and glucose from 4-''O''-β-D-mannosyl-D-glucose and inorganic phosphate. A unique proton relay mechanism for GH130 enzymes was proposed on the basis of the three-dimensional strucuture of BfMGP <cite>Nakae2013</cite>. In contrast to other inverting glycoside phosphorylases, where a general acid catalyst is proposed to directly protonate the glycosidic oxygen, the catalytic Asp of GH130 enzymes (Asp131 in BfMGP) donates a proton to O3 of mannosyl group bound to subsite -1, and a proton is transferred intramolecularly to the glycosidic oxygen from 3OH group. Inorganic phosphate attacks C1 of the mannosyl residue at the non-reducing end of substrate and α-mannose 1-phosphate is generated. | GH130 phosphorylases phosphorolyze β-mannosidic linkage at the non-reducing end of substrates with net [[inverting|inversion]] of anomeric configuration affording α-mannose-1-phosphate. Senoura et al. <cite>Senoura2011</cite> demonstrated that 4-''O''-β-D-mannosyl-D-glucose phosphorylase from ''Bacteroides fragilis'' (BfMGP) produces α-mannose 1-phosphate and glucose from 4-''O''-β-D-mannosyl-D-glucose and inorganic phosphate. A unique proton relay mechanism for GH130 enzymes was proposed on the basis of the three-dimensional strucuture of BfMGP <cite>Nakae2013</cite>. In contrast to other inverting glycoside phosphorylases, where a general acid catalyst is proposed to directly protonate the glycosidic oxygen, the catalytic Asp of GH130 enzymes (Asp131 in BfMGP) donates a proton to O3 of mannosyl group bound to subsite -1, and a proton is transferred intramolecularly to the glycosidic oxygen from 3OH group. Inorganic phosphate attacks C1 of the mannosyl residue at the non-reducing end of substrate and α-mannose 1-phosphate is generated. |
Revision as of 17:43, 24 March 2015
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
- Author: ^^^Wataru Saburi^^^
- Responsible Curator: ^^^Haruhide Mori^^^
Glycoside Hydrolase Family GH130 | |
Clan | none |
Mechanism | inverting |
Active site residues | known |
CAZy DB link | |
https://www.cazy.org/GH130.html |
Substrate specificities
Family GH130 contains phosphorylases that catalyze the phosphorolysis of β-mannosidic linkages at the non-reducing end of substrates. The family was created based on the identification of 4-O-β-D-mannosyl-D-glucose phosphorylase activity (EC 2.4.1.281) for the protein derived from the gene BF0772 of Bacteroides fragilis [1]. Other activities within the family include: β-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319) from Ruminococcus albus [2], 1,4-β-mannosyl-N-acetylglucosamine phosphorylase (EC 2.4.1.320) of unknown human gut bacterium mannoside phosphorylase (UhgbMP) [3], 1,2-β-oligomannan phosphorylase from Thermoanaerobacter sp. X-514 [4], and β-1,2-mannnobiose phosphorylase from Thermoanaerobacter sp. X-514 [4].
Kinetics and Mechanism
GH130 phosphorylases phosphorolyze β-mannosidic linkage at the non-reducing end of substrates with net inversion of anomeric configuration affording α-mannose-1-phosphate. Senoura et al. [1] demonstrated that 4-O-β-D-mannosyl-D-glucose phosphorylase from Bacteroides fragilis (BfMGP) produces α-mannose 1-phosphate and glucose from 4-O-β-D-mannosyl-D-glucose and inorganic phosphate. A unique proton relay mechanism for GH130 enzymes was proposed on the basis of the three-dimensional strucuture of BfMGP [5]. In contrast to other inverting glycoside phosphorylases, where a general acid catalyst is proposed to directly protonate the glycosidic oxygen, the catalytic Asp of GH130 enzymes (Asp131 in BfMGP) donates a proton to O3 of mannosyl group bound to subsite -1, and a proton is transferred intramolecularly to the glycosidic oxygen from 3OH group. Inorganic phosphate attacks C1 of the mannosyl residue at the non-reducing end of substrate and α-mannose 1-phosphate is generated.
Catalytic Residues
Ladevèze et al. [3] compared 369 protein sequences of GH130 members and selected Asp104, Glu273, and Asp304 of UhgbMP as putative catalytic amino acid residues. Mutation of these acidic amino acid residues resulted in large reduction of enzyme activity. Especially, the D104N mutation completely abolished the catalytic activity. Consistent with this result, three dimensional structure analysis demonstrated that only Asp131 of BfMGP, corresponding to Asp104 of UhgbMP, is situated near the glycosidic oxygen [5]. However, this Asp appeared to be too distant from the the glycosidic oxygen for direct protonation, and the proton relay mechanism described above was therefore proposed.
Three-dimensional structures
Three-dimensional structures of several GH130 phosphorylases have been reported. The structure of Bacteroides fragilis BfMGP has been reported in complex with phosphate; 4-O-β-D-mannosyl-D-glucose and phosphate; mannose, glucose, and phosphate; and α-mannose 1-phosphate [5]. BfMGP forms a homohexamer, and each monomer has a five-bladed β-propeller fold. It has long α-helices at the N- and C-termini, and these structure are predicted to be responsible for the quaternary structure formation.
Family Firsts
- First stereochemistry determination
- Bacteroides fragilis BfMGP [1]
- First general acid residue identification
- Bacteroides fragilis BfMGP [5]
- First sequence identification
- Bacteroides fragilis BfMGP [1]
- Ruminococcus albus β-1,4-mannooligosaccharide phosphorylase [2]
- Bacteroides thetaiotaomicron 4-O-β-D-Mannosyl-D-glucose phosphorylase [6]
- Thermoanaerobacter sp. X-514 1,2-β-oligomannan phosphorylase [4]
- Thermoanaerobacter sp. X-514 β-1,2-mannnobiose phosphorylase [4]
- First 3-D structure
- Bacteroides fragilis BfMGP [5]
References
- Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, and Ito S. (2011). New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun. 2011;408(4):701-6. DOI:10.1016/j.bbrc.2011.04.095 |
- Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, and Matsui H. (2012). Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J Biol Chem. 2012;287(50):42389-99. DOI:10.1074/jbc.M112.390336 |
- Ladevèze S, Tarquis L, Cecchini DA, Bercovici J, André I, Topham CM, Morel S, Laville E, Monsan P, Lombard V, Henrissat B, and Potocki-Véronèse G. (2013). Role of glycoside phosphorylases in mannose foraging by human gut bacteria. J Biol Chem. 2013;288(45):32370-32383. DOI:10.1074/jbc.M113.483628 |
- Chiku K, Nihira T, Suzuki E, Nishimoto M, Kitaoka M, Ohtsubo K, and Nakai H. (2014). Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One. 2014;9(12):e114882. DOI:10.1371/journal.pone.0114882 |
- Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, and Shirai T. (2013). Structure of novel enzyme in mannan biodegradation process 4-O-β-D-mannosyl-D-glucose phosphorylase MGP. J Mol Biol. 2013;425(22):4468-78. DOI:10.1016/j.jmb.2013.08.002 |
- Nihira T, Suzuki E, Kitaoka M, Nishimoto M, Ohtsubo K, and Nakai H. (2013). Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans. J Biol Chem. 2013;288(38):27366-27374. DOI:10.1074/jbc.M113.469080 |