CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 137"

From CAZypedia
Jump to navigation Jump to search
Line 15: Line 15:
 
|-
 
|-
 
|'''Mechanism'''
 
|'''Mechanism'''
|retaining/inverting
+
|Unknown
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|known/not known
+
|known
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 36: Line 36:
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Content is to be added here.
+
Unknown
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Content is to be added here.
+
The catalytic residues were shown to be a pair of glutamates. They sit around 6 Angstroms apart. Typically retaining enzymes are expected to have their catalytic residues ~5.5 Angstroms apart, whilst in inverting enzymes they are expected to be ~10 Angstroms apart.  Glu159 sits beneath the alpha face of the -1 β-linked arabinose, 3.2 Angstroms from the anomeric carbon, placing it in a an ideal position to act as a catalytic nucleophile. Glu240 resides 5 Angstroms from the glycosidic oxygen which somewhat far to act as catalytic acid/base in a retaining mechanism. Alternatively, one could also speculate that at a distance of 4.6 Angstroms from the anomeric carbon Glu240 could potentially act as a catalytic base in an inverting mechanism, with Glu159 acting as the catalytic acid being at a distance of 3.7 Angstroms from the glycosidic oxygen.  
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
The structure of BT0996 comprises a single domain which is a five bladed β-propeller fold. Each blade is composed of three to four anti parallel β-strands that extend out radially from the central core. The final blade is formed by strands from both the N- and C-terminus of the protein which is termed as 'molecular velcro' and is believed to add considerable stability to the fold.  
+
The structure of BT0996 comprises a single domain which is a five bladed β-propeller fold. Each blade is composed of three to four anti parallel β-strands that extend out radially from the central core. The final blade is formed by strands from both the N- and C-terminus of the protein which is termed as 'molecular velcro' and is believed to add considerable stability to the fold. It should be noted that BT0996 is appended to a GH2 from clan GHA. This GH2 targets β-D-GlcA linkage in Chain A of RGII.
  
 
== Family Firsts ==
 
== Family Firsts ==

Revision as of 07:55, 25 January 2020

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH137
Clan GH-x
Mechanism Unknown
Active site residues known
CAZy DB link
https://www.cazy.org/GH137.html


Substrate specificities

Content is to be added here.

Authors may get an idea of what to put in each field from Curator Approved Glycoside Hydrolase Families. (TIP: Right click with your mouse and open this link in a new browser window...)

In the meantime, please see these references for an essential introduction to the CAZy classification system: [1, 2].

Kinetics and Mechanism

Unknown

Catalytic Residues

The catalytic residues were shown to be a pair of glutamates. They sit around 6 Angstroms apart. Typically retaining enzymes are expected to have their catalytic residues ~5.5 Angstroms apart, whilst in inverting enzymes they are expected to be ~10 Angstroms apart. Glu159 sits beneath the alpha face of the -1 β-linked arabinose, 3.2 Angstroms from the anomeric carbon, placing it in a an ideal position to act as a catalytic nucleophile. Glu240 resides 5 Angstroms from the glycosidic oxygen which somewhat far to act as catalytic acid/base in a retaining mechanism. Alternatively, one could also speculate that at a distance of 4.6 Angstroms from the anomeric carbon Glu240 could potentially act as a catalytic base in an inverting mechanism, with Glu159 acting as the catalytic acid being at a distance of 3.7 Angstroms from the glycosidic oxygen.

Three-dimensional structures

The structure of BT0996 comprises a single domain which is a five bladed β-propeller fold. Each blade is composed of three to four anti parallel β-strands that extend out radially from the central core. The final blade is formed by strands from both the N- and C-terminus of the protein which is termed as 'molecular velcro' and is believed to add considerable stability to the fold. It should be noted that BT0996 is appended to a GH2 from clan GHA. This GH2 targets β-D-GlcA linkage in Chain A of RGII.

Family Firsts

First stereochemistry determination
Not Known.
First catalytic nucleophile/base identification
Inferred to be Glu159 in BT0996 [3].
First general acid/base residue identification
Inferred to be Glu240 in BT0996[3].
First 3-D structure
The first structure determination for GH137 was of BT0996 from the organism Bacteroides thetaiotaomicon[3].

References

  1. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  3. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 | PubMed ID:28329766 [Ndeh2017]

All Medline abstracts: PubMed