CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 85"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
 
     Normal  0              false  false  false      EN-US  X-NONE  X-NONE                                                    MicrosoftInternetExplorer4
 
     Normal  0              false  false  false      EN-US  X-NONE  X-NONE                                                    MicrosoftInternetExplorer4
  
Substrate specificities
+
== Substrate specificities ==
  
 
GH85 enzymes, commonly referred to as Endo-beta-N-acetylglucosaminidases (ENGse) cleave the chitobiose core (GlcNAc-beta-1,4-GlcNac) of N-linked glycans.  Examples of ENGases have been shown to be active on high-mannose type N-glycans (Endo-H, Endo-A, Endo-Fsp, Endo-F1, and Endo-E), bi- and tri-antennary complex type N-glycans (Endo-F2 and Endo-F3), and both substrates (Endo-M). Although specificity appears to be primarily determined by the oligosaccharide glycone<cite>#1</cite>, there is evidence that structural features within the carbohydrate-protein aglycone region (GlcNAc-Asn) may also play a role in substrate recognition. GH85s are broadly distributed in nature having been described in bacteria <cite>#2 #3 #4 #5 </cite>, fungi <cite>#6</cite>, plants <cite>#7</cite> and animals <cite>#8</cite>. In several cases, including Endo-A from Arthrobacter protophormiae (ApGH85) and Endo-M from Mucor hiemalis (MhGH85), ENGases have been shown to catalyze transglycosylation reactions, making them useful candidates in the bioengineering of glycoproteins <cite>#1</cite> and biologic pharmaceuticals <cite>#9</cite>.
 
GH85 enzymes, commonly referred to as Endo-beta-N-acetylglucosaminidases (ENGse) cleave the chitobiose core (GlcNAc-beta-1,4-GlcNac) of N-linked glycans.  Examples of ENGases have been shown to be active on high-mannose type N-glycans (Endo-H, Endo-A, Endo-Fsp, Endo-F1, and Endo-E), bi- and tri-antennary complex type N-glycans (Endo-F2 and Endo-F3), and both substrates (Endo-M). Although specificity appears to be primarily determined by the oligosaccharide glycone<cite>#1</cite>, there is evidence that structural features within the carbohydrate-protein aglycone region (GlcNAc-Asn) may also play a role in substrate recognition. GH85s are broadly distributed in nature having been described in bacteria <cite>#2 #3 #4 #5 </cite>, fungi <cite>#6</cite>, plants <cite>#7</cite> and animals <cite>#8</cite>. In several cases, including Endo-A from Arthrobacter protophormiae (ApGH85) and Endo-M from Mucor hiemalis (MhGH85), ENGases have been shown to catalyze transglycosylation reactions, making them useful candidates in the bioengineering of glycoproteins <cite>#1</cite> and biologic pharmaceuticals <cite>#9</cite>.
 +
 +
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>

Revision as of 16:48, 26 October 2009

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link
http://www.cazy.org/fam/GHnn.html
    Normal   0               false   false   false      EN-US   X-NONE   X-NONE                                                     MicrosoftInternetExplorer4

Substrate specificities

GH85 enzymes, commonly referred to as Endo-beta-N-acetylglucosaminidases (ENGse) cleave the chitobiose core (GlcNAc-beta-1,4-GlcNac) of N-linked glycans. Examples of ENGases have been shown to be active on high-mannose type N-glycans (Endo-H, Endo-A, Endo-Fsp, Endo-F1, and Endo-E), bi- and tri-antennary complex type N-glycans (Endo-F2 and Endo-F3), and both substrates (Endo-M). Although specificity appears to be primarily determined by the oligosaccharide glycone[1], there is evidence that structural features within the carbohydrate-protein aglycone region (GlcNAc-Asn) may also play a role in substrate recognition. GH85s are broadly distributed in nature having been described in bacteria [2, 3, 4, 5], fungi [6], plants [7] and animals [8]. In several cases, including Endo-A from Arthrobacter protophormiae (ApGH85) and Endo-M from Mucor hiemalis (MhGH85), ENGases have been shown to catalyze transglycosylation reactions, making them useful candidates in the bioengineering of glycoproteins [1] and biologic pharmaceuticals [9].


References

  1. Li B, Song H, Hauser S, and Wang LX. (2006). A highly efficient chemoenzymatic approach toward glycoprotein synthesis. Org Lett. 2006;8(14):3081-4. DOI:10.1021/ol061056m | PubMed ID:16805557 [1]
  2. Karamanos Y, Bourgerie S, Barreaud JP, and Julien R. (1995). Are there biological functions for bacterial endo-N-acetyl-beta-D-glucosaminidases?. Res Microbiol. 1995;146(6):437-43. DOI:10.1016/0923-2508(96)80289-0 | PubMed ID:8525060 [2]
  3. Barreaud JP, Bourgerie S, Julien R, Guespin-Michel JF, and Karamanos Y. (1995). An endo-N-acetyl-beta-D-glucosaminidase, acting on the di-N-acetylchitobiosyl part of N-linked glycans, is secreted during sporulation of Myxococcus xanthus. J Bacteriol. 1995;177(4):916-20. DOI:10.1128/jb.177.4.916-920.1995 | PubMed ID:7860600 [3]
  4. Takegawa K, Fujiwara K, Iwahara S, Yamamoto K, and Tochikura T. (1989). Effect of deglycosylation of N-linked sugar chains on glucose oxidase from Aspergillus niger. Biochem Cell Biol. 1989;67(8):460-4. DOI:10.1139/o89-072 | PubMed ID:2511903 [4]
  5. Abbott DW, Ficko-Blean E, van Bueren AL, Rogowski A, Cartmell A, Coutinho PM, Henrissat B, Gilbert HJ, and Boraston AB. (2009). Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules. Biochemistry. 2009;48(43):10395-404. DOI:10.1021/bi9013424 | PubMed ID:19788273 [5]
  6. Fujita K, Kobayashi K, Iwamatsu A, Takeuchi M, Kumagai H, and Yamamoto K. (2004). Molecular cloning of Mucor hiemalis endo-beta-N-acetylglucosaminidase and some properties of the recombinant enzyme. Arch Biochem Biophys. 2004;432(1):41-9. DOI:10.1016/j.abb.2004.09.013 | PubMed ID:15519295 [6]
  7. Li SC, Asakawa M, Hirabayashi Y, and Li Y. (1981). Isolation of two endo-beta-N-acetylglucosaminidases from fig latex. Biochim Biophys Acta. 1981;660(2):278-83. DOI:10.1016/0005-2744(81)90171-6 | PubMed ID:6793075 [7]
  8. Ito K, Okada Y, Ishida K, and Minamiura N. (1993). Human salivary endo-beta-N-acetylglucosaminidase HS specific for complex type sugar chains of glycoproteins. J Biol Chem. 1993;268(21):16074-81. | Google Books | Open Library PubMed ID:8340428 [8]
  9. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, and Gerngross TU. (2006). Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441-3. DOI:10.1126/science.1130256 | PubMed ID:16960007 [9]
  10. pmid=

    [10]
  11. pmid=

    [11]
  12. 10pmid=

    [12]
  13. pmid=

    [13]
  14. pmid=

    [14]
  15. pmid=

    [15]

All Medline abstracts: PubMed

[[Category:Glycoside Hydrolase Families|GHnnn]]