CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.
CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 55"
| Line 1: | Line 1: | ||
| − | + | * [[Author]]s: [[User:TakuyaIshida|Takuya Ishida]] and ^^^Kiyohiko Igarashi^^^ | |
| − | |||
* [[Responsible Curator]]: ^^^User:ShinyaFushinobu|Shinya Fushinobu^^^ | * [[Responsible Curator]]: ^^^User:ShinyaFushinobu|Shinya Fushinobu^^^ | ||
---- | ---- | ||
| Line 27: | Line 26: | ||
[[Glycoside Hydrolases]] of family 55 exclusively consists of β-1,3-glucanases, including both exo- and endo-enzymes, at this moment. All of biochemically characterized members of this family have fungal origin, but not from yeast. Several homologous genes are found from Bacterial genomes, but none of their gene products are characterized. | [[Glycoside Hydrolases]] of family 55 exclusively consists of β-1,3-glucanases, including both exo- and endo-enzymes, at this moment. All of biochemically characterized members of this family have fungal origin, but not from yeast. Several homologous genes are found from Bacterial genomes, but none of their gene products are characterized. | ||
| − | The enzymes belonging to this family are generally called "laminarinase" because the enzyme hydrolyzes laminarin | + | The enzymes belonging to this family are generally called "laminarinase" because the enzyme hydrolyzes laminarin (β-1,3-glucan having single β-1,6-glucoside side chains: β-1,3/1,6-glucan) from brown algae. But the physiological substrate for the enzymes might be fungal cell wall, whose major component is also β-1,3/1,6-glucan. |
| − | + | The majority of the members in this family are exo-glucan-1,3-β-glucosidases (EC[http://us.expasy.org/cgi-bin/nicezyme.pl?3.2.1.58 3.2.1.58]). Exo-β-1,3-glucanases in this family cleave the terminal β-1,3-glycosidic linkage at non-reducing end of β-1,3-glucans or β-1,3/1,6-glucans. Many of them produces gentiobiose (β-D-glucopyranosyl-1,6-D-glucose) in addition to glucose during degradation of β-1,3/1,6-glucan<CITE>REF2</CITE><CITE>REF3</CITE>. | |
Bgn13.1 from [http://en.wikipedia.org/wiki/Trichoderma_harzianum ''Trichoderma harzianum''] <CITE>REF4</CITE> and LamAI from[http://en.wikipedia.org/wiki/Trichoderma_viride ''Trichoderma viride''] <CITE>REF5</CITE> were described as endo-type enzymes (EC[http://us.expasy.org/cgi-bin/nicezyme.pl?3.2.1.39 3.2.1.39]) based on the experimental results. | Bgn13.1 from [http://en.wikipedia.org/wiki/Trichoderma_harzianum ''Trichoderma harzianum''] <CITE>REF4</CITE> and LamAI from[http://en.wikipedia.org/wiki/Trichoderma_viride ''Trichoderma viride''] <CITE>REF5</CITE> were described as endo-type enzymes (EC[http://us.expasy.org/cgi-bin/nicezyme.pl?3.2.1.39 3.2.1.39]) based on the experimental results. | ||
| Line 35: | Line 34: | ||
== Kinetics and Mechanism == | == Kinetics and Mechanism == | ||
| − | Family 55 enzymes are inverting enzyme, as shown by NMR analysis on ExgS from ''Aspergillus saitoi'' <CITE>REF6</CITE>. This result is consistent with many classical reports on gentiobiose-producing exo-β-1,3- | + | Family 55 enzymes are inverting enzyme, as shown by NMR analysis on ExgS from ''Aspergillus saitoi'' <CITE>REF6</CITE>. This result is consistent with many classical reports on gentiobiose-producing exo-β-1,3-glucanases from fungi<CITE>REF7</CITE><CITE>REF8</CITE>, but the genes for these enzymes have not cloned yet. |
== Catalytic Residues == | == Catalytic Residues == | ||
| Line 43: | Line 42: | ||
== Three-dimensional structures == | == Three-dimensional structures == | ||
| − | The first solved 3-D structure was exo-β-1,3-glucanase Lam55A from ''P. chrysosporium'' <cite>REF1</cite>. Two tandem &beta-helix domains are positioned side by side to form a rib-like structure. The active site is located between the two β-helix domains. | + | The first solved 3-D structure was exo-β-1,3-glucanase Lam55A from ''P. chrysosporium'' <cite>REF1</cite>. Two tandem β-helix domains are positioned side by side to form a rib cage-like structure. The active site is located between the two β-helix domains. |
== Family Firsts == | == Family Firsts == | ||
| − | ;First sterochemistry determination: Probably ExgS from ''A. saitoi'' by <sup>1</sup>H-NMR analysis <CITE>REF6</CITE>. See[[#Kinetics and Mechanism|kinetics and mechanism]]. | + | ;First sterochemistry determination: Probably ExgS from ''A. saitoi'' by <sup>1</sup>H-NMR analysis <CITE>REF6</CITE>. See [[#Kinetics and Mechanism|kinetics and mechanism]]. |
;First gene cloning: BGN13.1 from ''T. harzianum''. <cite>REF7</cite>. | ;First gene cloning: BGN13.1 from ''T. harzianum''. <cite>REF7</cite>. | ||
Revision as of 23:36, 26 October 2009
- Authors: Takuya Ishida and ^^^Kiyohiko Igarashi^^^
- Responsible Curator: ^^^User:ShinyaFushinobu|Shinya Fushinobu^^^
| Glycoside Hydrolase Family 55 | |
| Clan | none |
| Mechanism | inverting |
| Active site residues | not known |
| CAZy DB link | |
| http://www.cazy.org/fam/GH55.html | |
Substrate specificities
Glycoside Hydrolases of family 55 exclusively consists of β-1,3-glucanases, including both exo- and endo-enzymes, at this moment. All of biochemically characterized members of this family have fungal origin, but not from yeast. Several homologous genes are found from Bacterial genomes, but none of their gene products are characterized.
The enzymes belonging to this family are generally called "laminarinase" because the enzyme hydrolyzes laminarin (β-1,3-glucan having single β-1,6-glucoside side chains: β-1,3/1,6-glucan) from brown algae. But the physiological substrate for the enzymes might be fungal cell wall, whose major component is also β-1,3/1,6-glucan.
The majority of the members in this family are exo-glucan-1,3-β-glucosidases (EC3.2.1.58). Exo-β-1,3-glucanases in this family cleave the terminal β-1,3-glycosidic linkage at non-reducing end of β-1,3-glucans or β-1,3/1,6-glucans. Many of them produces gentiobiose (β-D-glucopyranosyl-1,6-D-glucose) in addition to glucose during degradation of β-1,3/1,6-glucan[1][2].
Bgn13.1 from Trichoderma harzianum [3] and LamAI fromTrichoderma viride [4] were described as endo-type enzymes (EC3.2.1.39) based on the experimental results.
Kinetics and Mechanism
Family 55 enzymes are inverting enzyme, as shown by NMR analysis on ExgS from Aspergillus saitoi [5]. This result is consistent with many classical reports on gentiobiose-producing exo-β-1,3-glucanases from fungi[6][7], but the genes for these enzymes have not cloned yet.
Catalytic Residues
From the crystal structure of Lam55A from Phanerochaete chrysospoirum complexed with gluconolactone, Glu633 appears to be the general acid. A possible nucleophilic water was found near the C-1 atom of gluconolactone, but no acidic residue that can be the general base was found around the water.
In the classical studies for exo-β-1,3-glucanase from Basidiomycete QM-806, Jeffcoat and Kirkwood reported the chemical modification of histidine in the catalytic site of the enzyme caused irreversible loss of the activity, suggesting crucial role of the histidine residues [8].
Three-dimensional structures
The first solved 3-D structure was exo-β-1,3-glucanase Lam55A from P. chrysosporium [9]. Two tandem β-helix domains are positioned side by side to form a rib cage-like structure. The active site is located between the two β-helix domains.
Family Firsts
- First sterochemistry determination
- Probably ExgS from A. saitoi by 1H-NMR analysis [5]. See kinetics and mechanism.
- First gene cloning
- BGN13.1 from T. harzianum. [6].
- First general acid residue identification
- First general base residue identification
- First 3-D structure
- Lam55A from Phanerochaete chrysosporium K-3 by X-ray crystallography (PDB 3eqo) [9].
References
Error fetching PMID 8948426:
Error fetching PMID 12594027:
Error fetching PMID 7592488:
Error fetching PMID 12843664:
Error fetching PMID 5416668:
Error fetching PMID 3100526:
- Error fetching PMID 8948426:
- Error fetching PMID 12594027:
- Error fetching PMID 7592488:
- Error fetching PMID 12843664:
-
Kasahara S, Nakajima T, Miyamoto C, Wada K, Furuichi Y, and Ichishima E. Characterization and mode of action of exo-1,3-β-D-glucanase from Aspergillus saitoi. J Ferment Bioeng 74 (4), 238-240 (1992).DOI:10.1016/0922-338X(92)90118-E
- Error fetching PMID 5416668:
-
Nagasaki N, Saito K, and Yarnamoto S. Purification and characterization of an exo-β-l,3-glucanase from a fungi imperfecti. Agric Biol Cbem 41, 493-502 (1977).JOI:JST.Journalarchive/bbb1961/41.493
- Error fetching PMID 3100526:
- Error fetching PMID 19193645: