CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 13"

From CAZypedia
Jump to navigation Jump to search
Line 29: Line 29:
  
 
== Substrate specificities ==      Normal  0  21        false  false  false                                MicrosoftInternetExplorer4
 
== Substrate specificities ==      Normal  0  21        false  false  false                                MicrosoftInternetExplorer4
CAZy Family 13 is the major glycoside hydrolase family acting on a-glucoside containing substrates. It has recently been subdivided into subfamilies (Stam et al., 2005). There has been a number of reviews concerned with a-amylases (ref). GH13 contains hydrolases, transglycosidases and isomerases, noticeably amino acid transporters, which have no glycoside activity, are GH13 members. The enzymes are found in a very wide range of organisms form all kingdoms. While known specificities are indicated by the enzyme named as follow below, for several of these enzymes numerous have been characterized to comprise subspecificities defined by structural requirements for preferred substrates or the structure of the predominant product(s). Known enzymes currently include;                                                   -amylase (EC 3.2.1.1); pullulanase (EC 3.2.1.41); cyclomaltodextrin glucanotransferase (EC 2.4.1.19); cyclomaltodextrinase (EC 3.2.1.54); trehalose-6-phosphate hydrolase (EC 3.2.1.93); oligo-   -glucosidase (EC 3.2.1.10); maltogenic amylase (EC 3.2.1.133); neopullulanase (EC 3.2.1.135);    -glucosidase (EC 3.2.1.20); maltotetraose-forming    -amylase (EC 3.2.1.60); isoamylase (EC 3.2.1.68); glucodextranase (EC 3.2.1.70); maltohexaose-forming    -amylase (EC 3.2.1.98); maltotriose-forming    -amylase (EC 3.2.1.116); branching enzyme (EC 2.4.1.18); trehalose synthase (EC 5.4.99.16); 4-   -glucanotransferase (EC 2.4.1.25); maltopentaose-forming   -amylase (EC 3.2.1.-) ; amylosucrase (EC 2.4.1.4) ; sucrose phosphorylase (EC 2.4.1.7); malto-oligosyltrehalose trehalohydrolase (EC 3.2.1.141); isomaltulose synthase (EC 5.4.99.11); amino acid transporter.   -amylase (EC 3.2.1.1); pullulanase (EC 3.2.1.41); cyclomaltodextrin glucanotransferase (EC 2.4.1.19); cyclomaltodextrinase (EC 3.2.1.54); trehalose-6-phosphate hydrolase (EC 3.2.1.93); oligo-  -glucosidase (EC 3.2.1.10); maltogenic amylase (EC 3.2.1.133); neopullulanase (EC 3.2.1.135);    -glucosidase (EC 3.2.1.20); maltotetraose-forming    -amylase (EC 3.2.1.60); isoamylase (EC 3.2.1.68); glucodextranase (EC 3.2.1.70); maltohexaose-forming    -amylase (EC 3.2.1.98); maltotriose-forming    -amylase (EC 3.2.1.116); branching enzyme (EC 2.4.1.18); trehalose synthase (EC 5.4.99.16); 4-   -glucanotransferase (EC 2.4.1.25); maltopentaose-forming    -amylase (EC 3.2.1.-) ; amylosucrase (EC 2.4.1.4) ; sucrose phosphorylase (EC 2.4.1.7); malto-oligosyltrehalose trehalohydrolase (EC 3.2.1.141); isomaltulose synthase (EC 5.4.99.11); amino acid transporter. Interestingly several members of GH13 contains carbohydrate binding modules (CBMs) referred to as starch binding domains, and belonging to CBM20, 21, 25, 26, 34, 41, 45, 48, and 53 (refs).
+
CAZy Family 13 is the major glycoside hydrolase family acting on ''a''-glucoside containing substrates. It has recently been subdivided into subfamilies (Stam et al., 2005). There has been a number of reviews concerned with a-amylases (ref). GH13 contains hydrolases, transglycosidases and isomerases, noticeably amino acid transporters, which have no glycoside activity, are GH13 members. The enzymes are found in a very wide range of organisms form all kingdoms. While known specificities are indicated by the enzyme named as follow below, for several of these enzymes numerous have been characterized to comprise subspecificities defined by structural requirements for preferred substrates or the structure of the predominant product(s). Known enzymes currently include;               ''a''-amylase (EC 3.2.1.1); pullulanase (EC 3.2.1.41); cyclomaltodextrin glucanotransferase (EC 2.4.1.19); cyclomaltodextrinase (EC 3.2.1.54); trehalose-6-phosphate hydrolase (EC 3.2.1.93); oligo-''a''-glucosidase (EC 3.2.1.10); maltogenic amylase (EC 3.2.1.133); neopullulanase (EC 3.2.1.135);    ''a''-glucosidase (EC 3.2.1.20); maltotetraose-forming    ''a''-amylase (EC 3.2.1.60); isoamylase (EC 3.2.1.68); glucodextranase (EC 3.2.1.70); maltohexaose-forming    ''a''-amylase (EC 3.2.1.98); maltotriose-forming    ''a''-amylase (EC 3.2.1.116); branching enzyme (EC 2.4.1.18); trehalose synthase (EC 5.4.99.16); 4-''a''-glucanotransferase (EC 2.4.1.25); maltopentaose-forming ''a''-amylase (EC 3.2.1.-) ; amylosucrase (EC 2.4.1.4) ; sucrose phosphorylase (EC 2.4.1.7); malto-oligosyltrehalose trehalohydrolase (EC 3.2.1.141); isomaltulose synthase (EC 5.4.99.11); amino acid transporter.  Interestingly several members of GH13 contains carbohydrate binding modules (CBMs) referred to as starch binding domains, and belonging to CBM20, 21, 25, 26, 34, 41, 45, 48, and 53 (refs).
  
The different enzymes have a wide range of different preferred substrates and product. E.g. the a-amylases prefer polysaccharides of the a(1,4)-glucan type such as amylase and also amylopectin, but they do attack also the supramolecular structures represented by starch granules and glycogen particles and have some significant. Albeit lower turn-over of maltooligosaccharides of a certain degree of polymerization. These preferred substrate profiles can be manipulated through protein engineering.
+
The different enzymes have a wide range of different preferred substrates and product. E.g. the ''a''-amylases prefer polysaccharides of the ''a''(1,4)-glucan type such as amylase and also amylopectin, but they do attack also the supramolecular structures represented by starch granules and glycogen particles and have some significant. Albeit lower turn-over of maltooligosaccharides of a certain degree of polymerization. These preferred substrate profiles can be manipulated through protein engineering.
 
Content is to be added here.
 
Content is to be added here.
  

Revision as of 06:46, 27 January 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH13
Clan GH-H
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GHnn.html


== Substrate specificities == Normal 0 21 false false false MicrosoftInternetExplorer4 CAZy Family 13 is the major glycoside hydrolase family acting on a-glucoside containing substrates. It has recently been subdivided into subfamilies (Stam et al., 2005). There has been a number of reviews concerned with a-amylases (ref). GH13 contains hydrolases, transglycosidases and isomerases, noticeably amino acid transporters, which have no glycoside activity, are GH13 members. The enzymes are found in a very wide range of organisms form all kingdoms. While known specificities are indicated by the enzyme named as follow below, for several of these enzymes numerous have been characterized to comprise subspecificities defined by structural requirements for preferred substrates or the structure of the predominant product(s). Known enzymes currently include; a-amylase (EC 3.2.1.1); pullulanase (EC 3.2.1.41); cyclomaltodextrin glucanotransferase (EC 2.4.1.19); cyclomaltodextrinase (EC 3.2.1.54); trehalose-6-phosphate hydrolase (EC 3.2.1.93); oligo-a-glucosidase (EC 3.2.1.10); maltogenic amylase (EC 3.2.1.133); neopullulanase (EC 3.2.1.135); a-glucosidase (EC 3.2.1.20); maltotetraose-forming a-amylase (EC 3.2.1.60); isoamylase (EC 3.2.1.68); glucodextranase (EC 3.2.1.70); maltohexaose-forming a-amylase (EC 3.2.1.98); maltotriose-forming a-amylase (EC 3.2.1.116); branching enzyme (EC 2.4.1.18); trehalose synthase (EC 5.4.99.16); 4-a-glucanotransferase (EC 2.4.1.25); maltopentaose-forming a-amylase (EC 3.2.1.-) ; amylosucrase (EC 2.4.1.4) ; sucrose phosphorylase (EC 2.4.1.7); malto-oligosyltrehalose trehalohydrolase (EC 3.2.1.141); isomaltulose synthase (EC 5.4.99.11); amino acid transporter. Interestingly several members of GH13 contains carbohydrate binding modules (CBMs) referred to as starch binding domains, and belonging to CBM20, 21, 25, 26, 34, 41, 45, 48, and 53 (refs).

The different enzymes have a wide range of different preferred substrates and product. E.g. the a-amylases prefer polysaccharides of the a(1,4)-glucan type such as amylase and also amylopectin, but they do attack also the supramolecular structures represented by starch granules and glycogen particles and have some significant. Albeit lower turn-over of maltooligosaccharides of a certain degree of polymerization. These preferred substrate profiles can be manipulated through protein engineering. Content is to be added here.

This is an example of how to make references to a journal article [1]. (See the References section below). Multiple references can go in the same place like this [1, 2]. You can even cite books using just the ISBN [3]. References that are not in PubMed can be typed in by hand [4].

Kinetics and Mechanism

Content is to be added here.


Catalytic Residues

Content is to be added here.


Three-dimensional structures

Content is to be added here.


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [1].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [4].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [2].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [3].

References

  1. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  2. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  3. [3]
  4. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [MikesClassic]

All Medline abstracts: PubMed