CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 102"

From CAZypedia
Jump to navigation Jump to search
Line 30: Line 30:
 
== Substrate specificities ==
 
== Substrate specificities ==
 
[[Image:LTreaction.jpg|thumb|right|'''Figure 1.''' Reaction catalyzed by family GH102 enzymes. LT, lytic transglycosylase.  (''click to enlarge'').]]The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of bacterial origin and they constitute family 2 of the classification scheme of Blackburn and Clarke <cite>1</cite>.  The prototype for this family is membrane-bound lytic transglycosylase A (MltA) from ''Escherichia coli.''  These enzymes cleave the β-1,4 linkage between ''N''-acetylmuramoyl and ''N''-acetylglucosaminyl residues in peptidoglycan (Figure 1), but unlike the lytic transglycosylases of other families, they are active on peptidoglycan fragments lacking their stem peptides <cite>2</cite>.  No other activities have been observed.
 
[[Image:LTreaction.jpg|thumb|right|'''Figure 1.''' Reaction catalyzed by family GH102 enzymes. LT, lytic transglycosylase.  (''click to enlarge'').]]The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of bacterial origin and they constitute family 2 of the classification scheme of Blackburn and Clarke <cite>1</cite>.  The prototype for this family is membrane-bound lytic transglycosylase A (MltA) from ''Escherichia coli.''  These enzymes cleave the β-1,4 linkage between ''N''-acetylmuramoyl and ''N''-acetylglucosaminyl residues in peptidoglycan (Figure 1), but unlike the lytic transglycosylases of other families, they are active on peptidoglycan fragments lacking their stem peptides <cite>2</cite>.  No other activities have been observed.
 
  
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
The lytic transglycosidases, strictly speaking, are retaining enzymes.  However, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product thus lacking a reducing end <cite>3</cite>.  No detailed analyses involving both steady state and pre-steady state kinetic studies have been reported, but the Michaelis Menten (''K''<sub>M</sub> and ''V''<sub>max</sub>) parameters have been estimated for ''E. coli'' MltA acting on insoluble peptidoglycan sacculi <cite>2</cite>  
+
The lytic transglycosidases, strictly speaking, are retaining enzymes.  However, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product (Figure 1) thus lacking a reducing end <cite>3</cite>.  No detailed analyses involving both steady state and pre-steady state kinetic studies have been reported, but the Michaelis Menten (''K''<sub>M</sub> and ''V''<sub>max</sub>) parameters have been estimated for ''E. coli'' MltA acting on insoluble peptidoglycan sacculi <cite>2</cite>  
  
  

Revision as of 14:32, 19 February 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GHnn.html


Substrate specificities

Figure 1. Reaction catalyzed by family GH102 enzymes. LT, lytic transglycosylase. (click to enlarge).

The glycoside hydrolases of this family are lytic transglyosylases (also referred to as peptidoglycan lyases) of bacterial origin and they constitute family 2 of the classification scheme of Blackburn and Clarke [1]. The prototype for this family is membrane-bound lytic transglycosylase A (MltA) from Escherichia coli. These enzymes cleave the β-1,4 linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues in peptidoglycan (Figure 1), but unlike the lytic transglycosylases of other families, they are active on peptidoglycan fragments lacking their stem peptides [2]. No other activities have been observed.


Kinetics and Mechanism

The lytic transglycosidases, strictly speaking, are retaining enzymes. However, they are not hydrolases but rather catalyse an intramolecular glycosyl transferase reaction onto the C-6 hydroxyl group of the muramoyl residue leading to the generation of a terminal 1,6-anhdyromuramoyl product (Figure 1) thus lacking a reducing end [3]. No detailed analyses involving both steady state and pre-steady state kinetic studies have been reported, but the Michaelis Menten (KM and Vmax) parameters have been estimated for E. coli MltA acting on insoluble peptidoglycan sacculi [2]


Catalytic Residues

As with other lytic transglycosylases (families GH23, GH103, and GH104), the GH102 enzymes are thought to possess a single catalytic acid/base residue. This residue in E. coli MltA has been identified as Asp308 and, indeed, its replacement with Ala abolishes catalytic activity [4].

The mechanism of action of the family GH102 enzymes has yet to be proven experimentally, but examination of crystal structures of E. coli MltA complexed with chitohexoase has led to the proposal of a novel mechanism of action involving the stabilization of the transition state oxocarbenium ion by by an alpha-helix dipole [5].

Three-dimensional structures

Three-dimensional structures are available for several Family GH102 enzymes, the first solved being that of E. coli MltA [4]. Unlike the other lytic transglycosylases of families GH23, GH103, and GH104 which possesses the well characterized α+β “lysozyme fold,” these enzymes have a unique structure consisting of two domains. One has a double-ψ β-barrel fold similar to the catalytic domain of the family GH45 endoglucanase V from Humicola insolens [6]. The second and smaller domain has a β-barrel fold topology. The large groove between the two domains serves as the active site cleft.


Family Firsts

First identification of lytic transglycosylase
MltA from E. coli [2].
First catalytic nucleophile identification
Not applicable for lytic transglycosylases.
First general acid/base residue identification
Inferred by X-ray crystallography of E. coli MltA [4].
First 3-D structure
E. coli MltA [4].
First identification as a lipoprotein
E. coli MltA [7].
First identification of localization to outer membrane
E. coli MltA [7].
Frist demonstration of molecular interactions between GH102 enzymes and penicillin-binding proteins
E. coli MltA [8].

References

  1. Blackburn NT and Clarke AJ. (2001). Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol. 2001;52(1):78-84. DOI:10.1007/s002390010136 | PubMed ID:11139297 [1]
  2. Ursinus A and Höltje JV. (1994). Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli. J Bacteriol. 1994;176(2):338-43. DOI:10.1128/jb.176.2.338-343.1994 | PubMed ID:8288527 [2]
  3. Höltje JV, Mirelman D, Sharon N, and Schwarz U. (1975). Novel type of murein transglycosylase in Escherichia coli. J Bacteriol. 1975;124(3):1067-76. DOI:10.1128/jb.124.3.1067-1076.1975 | PubMed ID:357 [3]
  4. van Straaten KE, Dijkstra BW, Vollmer W, and Thunnissen AM. (2005). Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol. 2005;352(5):1068-80. DOI:10.1016/j.jmb.2005.07.067 | PubMed ID:16139297 [4]
  5. van Straaten KE, Barends TR, Dijkstra BW, and Thunnissen AM. (2007). Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem. 2007;282(29):21197-205. DOI:10.1074/jbc.M701818200 | PubMed ID:17502382 [5]
  6. Davies GJ, Dodson GG, Hubbard RE, Tolley SP, Dauter Z, Wilson KS, Hjort C, Mikkelsen JM, Rasmussen G, and Schülein M. (1993). Structure and function of endoglucanase V. Nature. 1993;365(6444):362-4. DOI:10.1038/365362a0 | PubMed ID:8377830 [6]
  7. Lommatzsch J, Templin MF, Kraft AR, Vollmer W, and Höltje JV. (1997). Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol. 1997;179(17):5465-70. DOI:10.1128/jb.179.17.5465-5470.1997 | PubMed ID:9287002 [7]
  8. Vollmer W, von Rechenberg M, and Höltje JV. (1999). Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem. 1999;274(10):6726-34. DOI:10.1074/jbc.274.10.6726 | PubMed ID:10037771 [8]

All Medline abstracts: PubMed

[[Category:Glycoside Hydrolase Families|GH102]