CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 17"

From CAZypedia
Jump to navigation Jump to search
Line 43: Line 43:
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
  Normal  0      21      false  false  false    FR  X-NONE  X-NONE                                      MicrosoftInternetExplorer4                                                                                                                                                                                                                                                                                                                            The stereochemistry of the reaction has been determined experimentally and catalysis by GH17 enzymes occurs via a double displacement mechanism and the beta-anomeric configuration of the released oligosaccharide is retained [4].  Detailed kinetic analyses are available for three purified barley (1,3)-β-d-glucan endohydrolases and two barley (1,3;1,4)-β-d-glucan endohydrolases [4].  
+
The stereochemistry of the reaction has been determined experimentally and catalysis by GH17 enzymes occurs via a double displacement mechanism and the beta-anomeric configuration of the released oligosaccharide is retained <cite>Chen1995</cite>.  Detailed kinetic analyses are available for three purified barley (1,3)-β-d-glucan endohydrolases and two barley (1,3;1,4)-β-d-glucan endohydrolases [4].  
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
Line 62: Line 62:
 
<biblio>
 
<biblio>
 
#Woodward Woodward, J.R. and Fincher, G.B. (1982) Substrate specificities and kinetic properties of two (1→3),(1→4)-β-D-glucan endo-hydrolases from germinating barley (''Hordeum vulgare'').  Carbohydr. Res. 106, 111-122
 
#Woodward Woodward, J.R. and Fincher, G.B. (1982) Substrate specificities and kinetic properties of two (1→3),(1→4)-β-D-glucan endo-hydrolases from germinating barley (''Hordeum vulgare'').  Carbohydr. Res. 106, 111-122
 +
#Chen1995    Normal  0      21      false  false  false    FR  X-NONE  X-NONE                                      MicrosoftInternetExplorer4                                                                                                                                                                                                                                                                                                                            Chen L, Sadek M, Stone BA, Brownlee RTC, Fincher GB and Høj PB (1995) Stereochemical course of glucan hydrolysis by barley 1,3- and 1,3;1,4-beta-glucan endohydrolases. Biochim. Biophys. Acta, 1253, 112-116
 
#Comfort2007 pmid=17323919
 
#Comfort2007 pmid=17323919
 
#He1999 pmid=9312086
 
#He1999 pmid=9312086

Revision as of 13:29, 23 April 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GHnn
Clan GH-x
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link
http://www.cazy.org/fam/GHnn.html


Substrate specificities

The family GH17 glycoside hydrolases are clan GH-A enzymes from bacteria, fungi and plants, and include two major groups of enzymes with related but distinct substrate specificities, namely (1,3)-beta-D-glucan endohydrolases (EC 3.1.2.39) and (1,3;1,4)-beta-D-glucan endohydrolases (EC 3.1.2.73). A (1,3)-beta-D-glucan exohydrolase (EC 3.1.2.58) is also classified in this family. The family 17 enzymes have quite distinct amino acid sequences and 3D structures compared with the (1,3)-beta-D-glucan endohydrolases and (1,3;1,4)-beta-D-glucan endohydrolases that have similar substrate specificities but are classified in families GH16, GH55, GH64 and GH81.

The family GH17 (1,3)-beta-D-glucan endohydrolases hydrolyse internal (1,3)-beta-D-glucosidic linkages in polysaccharides, but usually require a region of contiguous unbranched, un-substituted (1,3)-beta-D-glucosyl residues for activity. The enzymes release (1,3)-beta-D-oligoglucosides of DP 2-5 as their major products. Because the (1,3)-beta-D-glucan endohydrolases require a region of contiguous unbranched, un-substituted (1,3)-beta-D-glucosyl residues for activity, they are unable to hydrolyse the single (1,3)-beta-D-glucosidic linkages in (1,3;1,4)-beta-D-glucans from the Poaceae, but they will hydrolyse (1,3)-beta-D-glucosidic linkages in fungal (1,3;1,6)-beta-D-glucans, provided an appropriate region of contiguous un-substituted (1,3)-beta-D-glucosyl residues is available. The family GH17 (1,3;1,4)-beta-D-glucan endohydrolases (EC 3.1.2.73) hydrolyse (1,4)-beta-D-glucosidic linkages, but only (1,3;1,4)-beta-D-glucans in which the glucosyl residue involved in the glycosidic linkage cleaved is substituted at the C(0)3 position, that is, where the (1,4)-beta-D-glucosidic linkages are located on the reducing end side of (1,3)-beta-D-glucosyl residues.

Reaction products released are mainly (1,3;1,4)-beta-D-tri- and tetrasaccharides (G4G3Gred and G4G4G3Gred), but they also release higher oligosaccharides of up to 10 or more contiguous (1,4)-beta-D-glucosyl residues with a single reducing terminal (1,3)-beta-D-glucosyl residue (e.g. G4G4G4G4G4G4G3Gred). These longer oligosaccharides originate from the longer regions of adjacent (1,4)-linkages that account for approximately 10% by weight of (1,3;1,4)-beta-D-glucans in cell walls of the Poaceae [1].



This is an example of how to make references to a journal article [2]. (See the References section below). Multiple references can go in the same place like this [2, 3]. You can even cite books using just the ISBN [4]. References that are not in PubMed can be typed in by hand [5].


Kinetics and Mechanism

The stereochemistry of the reaction has been determined experimentally and catalysis by GH17 enzymes occurs via a double displacement mechanism and the beta-anomeric configuration of the released oligosaccharide is retained [6]. Detailed kinetic analyses are available for three purified barley (1,3)-β-d-glucan endohydrolases and two barley (1,3;1,4)-β-d-glucan endohydrolases [4].

Catalytic Residues

Content is to be added here.


Three-dimensional structures

Content is to be added here.


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [2].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [5].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [3].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [4].

References

  1. Woodward, J.R. and Fincher, G.B. (1982) Substrate specificities and kinetic properties of two (1→3),(1→4)-β-D-glucan endo-hydrolases from germinating barley (Hordeum vulgare). Carbohydr. Res. 106, 111-122

    [Woodward]
  2. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  3. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  4. [3]
  5. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [MikesClassic]
  6. Normal 0 21 false false false FR X-NONE X-NONE MicrosoftInternetExplorer4 Chen L, Sadek M, Stone BA, Brownlee RTC, Fincher GB and Høj PB (1995) Stereochemical course of glucan hydrolysis by barley 1,3- and 1,3;1,4-beta-glucan endohydrolases. Biochim. Biophys. Acta, 1253, 112-116

    [Chen1995]

All Medline abstracts: PubMed