CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 45"

From CAZypedia
Jump to navigation Jump to search
Line 32: Line 32:
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
The enzymes, formally known as cellulase family "K" in some historic literature,  act with inversion of anomeric configuration to generate the &alpha;-D anomer of the oligosaccaride as product.  Based upon the structure of the ''Humicola insolens'' endoglucanase V (now known as Cel45)<cite>Davies1993 Davies1995</cite> it was concluded that Asp121 (in an HxD motif) acted as the [[general acid]] (implied by its hydrogen bonding to the glycosidic oxygen of a ligand in the +1 subsite) and that the most likely [[general base]] is Asp10 (in a YxD motif), appropriately positioned "below" the sugar plane.  As with many inverting enzymes the base assignment is less secure than that of the acid.  
+
The enzymes, formally known as cellulase family "K" in some historic literature,  act with inversion of anomeric configuration to generate the &alpha;-D anomer of the oligosaccaride as product.  Based upon the structure of the ''Humicola insolens'' endoglucanase V (now known as Cel45) <cite>Davies1993 Davies1995</cite> it was concluded that Asp121 (in an HxD motif) acted as the [[general acid]] (implied by its hydrogen bonding to the glycosidic oxygen of a ligand in the +1 subsite) and that the most likely [[general base]] is Asp10 (in a YxD motif), appropriately positioned "below" the sugar plane.  As with many inverting enzymes the base assignment is less secure than that of the acid.
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==

Revision as of 04:20, 6 October 2010

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH45
Clan none
Mechanism inverting
Active site residues known (but see discussion)
CAZy DB link
http://www.cazy.org/fam/GH45.html


Substrate specificities

Glycoside hydrolases of GH45 are endoglucanases (EC 3.2.1.4); mainly the hydrolysis of soluble β -1,4 glucans. Family 45 enzymes are perhaps best known for their uses in the textile / detergent industries (see for example [1]).

Kinetics and Mechanism

The enzymes, formally known as cellulase family "K" in some historic literature, act with inversion of anomeric configuration to generate the α-D anomer of the oligosaccaride as product. Based upon the structure of the Humicola insolens endoglucanase V (now known as Cel45) [2, 3] it was concluded that Asp121 (in an HxD motif) acted as the general acid (implied by its hydrogen bonding to the glycosidic oxygen of a ligand in the +1 subsite) and that the most likely general base is Asp10 (in a YxD motif), appropriately positioned "below" the sugar plane. As with many inverting enzymes the base assignment is less secure than that of the acid.

Catalytic Residues

"Classical" GH45 enzymes likely use twin carboxylates corresponding to Asp10 and 121 of the Humicola insolens endoglucanase V [2, 3].

Three-dimensional structures

The 3-D structure of canonical GH45 enzymes is a six-stranded β-barrel to which a seventh strand is appended. The structure differs from classical β-barrels in containing both parallel and anti-parallel β-strands. At the time of the first structure solution the fold had ony previously been observed in "Barwin" [4]; a plant defense protein of unknown function. As is now expected for endo-enzymes, the active centre is located in an open substrate-binding groove. The original uncomplexes native structure had an disordered loop above the active centre and this was only seen to become ordered subsequently upon the binding of cello-oligosaccharides [3].

Family GH45 enzymes are structurally related to plant [5] and bacterial [6] expansins. Indeed they even display some of the catalytic centre motifs such as the catalytic acid. The putative catalytic base is absent in expansins. There are also GH45 members, exemplified by Phanerochaete chrysosporium Cel45 which also appear to lack the putative base [7].

Family Firsts

First sterochemistry determination
As part of an analysis of many families reported in [8].
First general acid/base residue identification
Catalytic residue proposals have been made solely on the basis of 3-D structure [2, 3].
First 3-D structure
The Humicola insolens EGV (now Cel45) by the Davies group [2].

References

Error fetching PMID 8377830:
Error fetching PMID 8519779:
Error fetching PMID 8223652:
Error fetching PMID 16984999:
Error fetching PMID 18971341:
Error fetching PMID 18676702:
Error fetching PMID 1390665:
  1. Schülein M, Kauppinen M, Lange L, Lassen S, Andersen L, Klysner S, and Nielsen, J (1998) Characterization of fungal cellulases for fiber modification. ACS Symposium Series, 687 (Enzyme Applications in Fiber Processing): 66-74. DOI: 10.1021/bk-1998-0687.ch006

    [Schulein1998]
  2. Error fetching PMID 8377830: [Davies1993]
  3. Error fetching PMID 8519779: [Davies1995]
  4. Error fetching PMID 1390665: [Ludvigsen]
  5. Error fetching PMID 16984999: [Yennawar]
  6. Error fetching PMID 18971341: [Kerff]
  7. Error fetching PMID 18676702: [Igarashi]
  8. Error fetching PMID 8223652: [Schou93]

All Medline abstracts: PubMed