CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "Glycoside Hydrolase Family 37"
Harry Brumer (talk | contribs) m (added EC link) |
Harry Brumer (talk | contribs) m (line spacing) |
||
Line 39: | Line 39: | ||
== Three-dimensional structures == | == Three-dimensional structures == | ||
The only structural representative from GH37 to date is the trehalase from ''Escherichia coli'', which was solved using X-ray crystallography <cite>Gibson2007</cite>. The structure revealed a (α/α)<sub>6</sub> barrel fold, similar to other α-toroidal glycosidases such as those in families [[GH94]], [[GH15]] and [[GH65]]. GH37 falls into clan GH-G. Structures have been solved with the inhibitors validoxylamine A, 1-thiatrehazolin and casuarine analogues <cite>Gibson2007,Cardona2009,Cardona2010</cite>. | The only structural representative from GH37 to date is the trehalase from ''Escherichia coli'', which was solved using X-ray crystallography <cite>Gibson2007</cite>. The structure revealed a (α/α)<sub>6</sub> barrel fold, similar to other α-toroidal glycosidases such as those in families [[GH94]], [[GH15]] and [[GH65]]. GH37 falls into clan GH-G. Structures have been solved with the inhibitors validoxylamine A, 1-thiatrehazolin and casuarine analogues <cite>Gibson2007,Cardona2009,Cardona2010</cite>. | ||
− | |||
== Family Firsts == | == Family Firsts == |
Revision as of 06:59, 9 October 2010
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
- Author: ^^^Tracey Gloster^^^
- Responsible Curator: ^^^Gideon Davies^^^
Glycoside Hydrolase Family GH37 | |
Clan | GH-G |
Mechanism | Inverting |
Active site residues | Inferred |
CAZy DB link | |
https://www.cazy.org/GH37.html |
Substrate specificities
GH37 glycoside hydrolases have been shown, to date, to hydrolyse only the disaccharide trehalose (α-D-glucopyranosyl-(1→1)-α-D-glucopyranoside) into two glucose units (EC 3.2.1.28).
Kinetics and Mechanism
A trehalase from flesh fly was shown to hydrolyse with inversion of stereochemistry using 18O labelled water [1]. The structural solution of the trehalase from Escherichia coli also demonstrates the active site catalytic residues are in a position consistent with an inverting mechanism [2].
Catalytic Residues
The catalytic residues have not been demonstrated unequivocally, but structural determination of the trehalase from Escherichia coli in complex with inhibitors in the active site implicate an aspartate residue (Asp312 in E. coli) as the catalytic acid and a glutamate residue (Glu496 in E. coli) as the catalytic base [2].
Three-dimensional structures
The only structural representative from GH37 to date is the trehalase from Escherichia coli, which was solved using X-ray crystallography [2]. The structure revealed a (α/α)6 barrel fold, similar to other α-toroidal glycosidases such as those in families GH94, GH15 and GH65. GH37 falls into clan GH-G. Structures have been solved with the inhibitors validoxylamine A, 1-thiatrehazolin and casuarine analogues [2, 3, 4].
Family Firsts
- First sterochemistry determination
- The inversion of stereochemistry for a trehalase from the flesh fly Sarcophaga barbata was first demonstrated by Clifford in 1980 [1].
- First catalytic nucleophile identification
- Predicted from structure determination [2], but not shown unequivocally.
- First general acid/base residue identification
- Predicted from structure determination [2], but not shown unequivocally.
- First 3-D structure
- The GH37 trehalase from Escherichia coli was solved by X-ray crystallography [2].
References
Error fetching PMID 17455176:
Error fetching PMID 19123216:
Error fetching PMID 20461849:
- Error fetching PMID 7341233:
- Error fetching PMID 17455176:
- Error fetching PMID 19123216:
- Error fetching PMID 20461849: