CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 63"

From CAZypedia
Jump to navigation Jump to search
Line 36: Line 36:
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
Family GH63 enzymes are [[inverting]] enzymes, as first shown by NMR on a processing &alpha;-glucosidase I from ''Saccharomyces cerevisiae'' <cite>Palcic1999</cite>.
+
Family GH63 enzymes are [[inverting]] enzymes, as first shown by NMR on a processing &alpha;-glucosidase I from ''S. cerevisiae'' <cite>Palcic1999</cite>.
  
  

Revision as of 21:37, 20 April 2011

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH63
Clan GH-G
Mechanism inverting
Active site residues Inferred
CAZy DB link
https://www.cazy.org/GH63.html


Substrate specificities

Glycoside hydrolases of this family are exo-acting inverting enzymes. The most commonly characterized activity of the eukaryotic enzymes is processing α-glucosidase I (EC 3.2.1.106), which specifically hydrolyzes the terminal α-1,2-glucosidic linkage in the N-linked oligosacharide precursor, Glc3Man9GlcNAc2. The enzymatic properties of Cwh41p, a processing α-glucosidase I from Saccharomyces cerevisiae, have been most intensively studied.

Genes for the GH63 enzymes have also been found in archaea and bacteria, but archaea and bacteria have been reported not to produce eukaryotic N-linked oligosacharides, and the principal substrates of archaeal and bacterial GH63 enzymes are still unclear. A bacterial GH63 enzyme, Escherichia coli YgjK, showed the highest activity for the α-1,3-glucosidic linkage of nigerose (Glc-α-1,3-Glc) among commercially available sugars [1].


Kinetics and Mechanism

Family GH63 enzymes are inverting enzymes, as first shown by NMR on a processing α-glucosidase I from S. cerevisiae [2].


Catalytic Residues

The catalytic residues were inferred by comparing the (α/α)6 barrel domain of the GH63 enzyme, E. coli YgjK, with those of GH15 and GH37 enzymes. The catalytic general acid is predicted as an aspartate residue (Asp501 in E. coli YgjK), and the general base is considered as a glutamate residue (Glu727 in E. coli YgjK) [1].


Three-dimensional structures

Content is to be added here.


Family Firsts

First stereochemistry determination
Cwh41p, a processing α-glucosidase I from Saccharomyces cerevisiae [2].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [1].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [1].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [1].

References

  1. Kurakata Y, Uechi A, Yoshida H, Kamitori S, Sakano Y, Nishikawa A, and Tonozuka T. (2008). Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. J Mol Biol. 2008;381(1):116-28. DOI:10.1016/j.jmb.2008.05.061 | PubMed ID:18586271 [Kurataka2008]
  2. Palcic MM, Scaman CH, Otter A, Szpacenko A, Romaniouk A, Li YX, and Vijay IK. (1999). Processing alpha-glucosidase I is an inverting glycosidase. Glycoconj J. 1999;16(7):351-5. DOI:10.1023/a:1007096011392 | PubMed ID:10619707 [Palcic1999]

All Medline abstracts: PubMed