CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 99"

From CAZypedia
Jump to navigation Jump to search
Line 44: Line 44:
 
|-
 
|-
  
!style="width:50%"|Three-dimensional structure of GH99 endo-&alpha;-mannosidase from ''Bacteroides xylanisolvens'', PDB code [{{PDBlink}}4ad1] <cite>xxx</cite>.  
+
!style="width:50%"|Three-dimensional structure of GH99 endo-&alpha;-mannosidase from ''Bacteroides xylanisolvens'', PDB code [{{PDBlink}}4ad1] <cite>Thompson2012</cite>.  
!style="width:50%"|Three-dimensional structure of GH99 endo-&alpha;-mannosidase from ''Bacteroides xylanisolvens'' bound to glucose-1,3-isofagomine and &alpha;-1,2- mannobiose, PDB code [{{PDBlink}}4ad4] <cite>Vrielink1994</cite>.
+
!style="width:50%"|Three-dimensional structure of GH99 endo-&alpha;-mannosidase from ''Bacteroides xylanisolvens'' bound to glucose-1,3-isofagomine and &alpha;-1,2- mannobiose, PDB code [{{PDBlink}}4ad4] <cite>Thompson2012</cite>.
 
|-
 
|-
 
|
 
|
Line 94: Line 94:
  
 
#Spiro2000 pmid=10764841
 
#Spiro2000 pmid=10764841
 +
#Thompson2012
  
  

Revision as of 17:22, 3 January 2012

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH99
Clan not assigned
Mechanism retaining/inverting
Active site residues known/not known
CAZy DB link
https://www.cazy.org/GH99.html


Substrate specificities

Glycoside hydrolases of family GH99 are endo-acting α-mannosidases that cleave glucose-substituted mannose within immature N-linked glycans of the general formula Glc1-3Man9GlcNAc2, with maximal activity on the monoglucosylated forms [1]. This family was originally created from mammalian enzyme, cloned by Spiro and co-workers [2]. Mammalian GH99 enzymes are localized to the Golgi apparatus [3] and appear to play a role in the rescue of glucosylated N-linked glycans that have evaded the action of the endoplasmic reticulum exo-glucosidases I and II [4]. Mammalian endo-α-mannosidases has increased activity on glucosylated N-linked glycans that have been trimmed in the non-glucose-substituted branches [2]. There is evidence that mammalian endo-α-mannosidases act on dolichol-bound N-glycan precursors [5], as well as free oligosaccharides released from N-glycoproteins and which undergo retrograde transport through the secretory pathway [6].

Kinetics and Mechanism

Content is to be added here.

Catalytic Residues

Content is to be added here.

Three-dimensional structures

Content is to be added here.

Sample structures

Three-dimensional structure of GH99 endo-α-mannosidase from Bacteroides xylanisolvens, PDB code [1] [7]. Three-dimensional structure of GH99 endo-α-mannosidase from Bacteroides xylanisolvens bound to glucose-1,3-isofagomine and α-1,2- mannobiose, PDB code [2] [7].

<jmol> <jmolApplet> <color>white</color> <frame>true</frame> <uploadedFileContents>4ad1.pdb</uploadedFileContents> <script>cpk off; wireframe off; cartoon; color cartoon powderblue; select ligand; wireframe 0.3; select MG; spacefill; set spin Y 10; spin off; set antialiasDisplay OFF</script> </jmolApplet> </jmol>

<jmol> <jmolApplet> <color>white</color> <frame>true</frame> <uploadedFileContents>4ad4.pdb</uploadedFileContents> <script>cpk off; wireframe off; cartoon; color cartoon powderblue; select ligand; wireframe 0.3; select MG; spacefill; set spin Y 10; spin off; set antialiasDisplay OFF</script> </jmolApplet> </jmol>


Family Firsts

First stereochemistry determination
Content is to be added here.
First catalytic nucleophile identification
Content is to be added here.
First general acid/base residue identification
Content is to be added here.
First 3-D structure
Content is to be added here.

References

  1. Roth J, Ziak M, and Zuber C. (2003). The role of glucosidase II and endomannosidase in glucose trimming of asparagine-linked oligosaccharides. Biochimie. 2003;85(3-4):287-94. DOI:10.1016/s0300-9084(03)00049-x | PubMed ID:12770767 [Roth2003]
  2. Spiro MJ, Bhoyroo VD, and Spiro RG. (1997). Molecular cloning and expression of rat liver endo-alpha-mannosidase, an N-linked oligosaccharide processing enzyme. J Biol Chem. 1997;272(46):29356-63. DOI:10.1074/jbc.272.46.29356 | PubMed ID:9361017 [Spiro1997]
  3. Zuber C, Spiro MJ, Guhl B, Spiro RG, and Roth J. (2000). Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol Biol Cell. 2000;11(12):4227-40. DOI:10.1091/mbc.11.12.4227 | PubMed ID:11102520 [Zuber2000]
  4. Dale MP, Kopfler WP, Chait I, and Byers LD. (1986). Beta-glucosidase: substrate, solvent, and viscosity variation as probes of the rate-limiting steps. Biochemistry. 1986;25(9):2522-9. DOI:10.1021/bi00357a036 | PubMed ID:3087421 [Dale1986]
  5. Spiro MJ and Spiro RG. (2000). Use of recombinant endomannosidase for evaluation of the processing of N-linked oligosaccharides of glycoproteins and their oligosaccharide-lipid precursors. Glycobiology. 2000;10(5):521-9. DOI:10.1093/glycob/10.5.521 | PubMed ID:10764841 [Spiro2000]
  6. Kukushkin NV, Alonzi DS, Dwek RA, and Butters TD. (2011). Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase. Biochem J. 2011;438(1):133-42. DOI:10.1042/BJ20110186 | PubMed ID:21585340 [Kukushkin2011]
  7. [Thompson2012]

All Medline abstracts: PubMed