CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.


CAZypedia needs your help!

We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.

Glycoside Hydrolase Family 49

From CAZypedia
Revision as of 00:50, 30 September 2025 by Takatsugu Miyazaki (talk | contribs)
Jump to navigation Jump to search
Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH49
Clan GH-N
Mechanism inverting
Active site residues known
CAZy DB link
https://www.cazy.org/GH49.html


Substrate specificities

Glycoside hydrolases of GH49 cleave α-(1→6)-glucosidic linkages or α-(1→4)-glucosidic linkages of polysaccharides and oligosaccharides containing α-(1→6)-glucosidic linkages, such as dextran and pullulan. The major activities reported for this family of glycoside hydrolases are dextranase (EC 3.2.1.11), and a dextranase from Talaromyces minioluteum (formerly known as Penicillium minioluteum), Dex49A, is currently the most characterized enzyme. GH49 dextranases have been found in some bacteria and fungi. Dextran 1,6-α-isomaltotriosidase (EC 3.2.1.95) from Brevibacterium fuscum var. dextranlyticum is an exo-acting enzyme that hydrolyzes dextran from the non-reducing ends to produce isomaltotriose [1]. Isopullulanase (EC 3.2.1.57)from Aspergillus brasiliensis ATCC 9642 (formerly Aspergillus niger ATCC 9642) hydrolyzes α-(1→4)-linkages of pullulan to produce isopanose [2]. 4-O-α-D-Isomaltooligosaccharylmaltooligosaccharide 1,4-α-isomaltooligosaccharohydrolase (EC 3.2.1.-) from Sarocladium kiliense possesses more strict substrate specificity than isopullulanase and cannot hydrolyze pullulan [3]. As an exception, endo-acting sulfated-arabinan hydrolase (EC 3.2.1-) from Phocaeicola plebeius degrades sulfated arabinan produced by green algae Chaetomorpha sp. and Cladophora sp. [4].

Kinetics and Mechanism

Family GH49 α-glycosidases are inverting enzymes, as first shown by NMR on a dextranase Dex49A from Talaromyces minioluteum [5] . Optical rotation analysis of the hydrolysis of panose by isopullulanase supported the inverting mechanism [6].

Catalytic Residues

Three Asp residues (Asp376, Asp395, and Asp396 in Dex49A) are conserved in the catalytic center of clan GH-N members, GH49 and GH28 enzymes [5, 7], which is also the case for GH87 and GH110. All three of the Asp mutants of A. brasiliensis isopullulanase, lost their activities [6]. The general acid was first identified in Dex49A from Talaromyces minioluteum as Asp395 following the three-dimensional structure determination. To date, it is unclear whether either (or both) of the Asp residues (Asp376 and Asp396 in Dex49A) acts as a general base in the reaction of GH49 and GH28 enzymes [5, 8, 9].

Three-dimensional structures

Three structures of GH49 enzymes are available so far [5, 7, 10], and they display a two-domain structure. The N-terminal domain is a β-sandwich and the C-terminal domain adopts a right-handed parallel β-helix. Although GH49, GH28, GH87, and GH110 families contain enzymes with distinct substrate specificities and exhibit low overall sequence homology, they share similar β-helix folds and the three catalytic Asp residues are completely conserved [5, 7, 11, 12]. Each coil forming the cylindrical β-helix fold is composed of three β-sheets, which are named PB1, PB2, and PB3, following the original definition for a PL1 enzyme, pectate lyase C [13].


Family Firsts

First gene cloning
Dextranase from Arthrobacter sp. CB-8 [14].
First stereochemistry determination
Dextranase (Dex49A) from Talaromyces minioluteum [5].
First general acid residue identification
Dextranase (Dex49A) from Talaromyces minioluteum [5].
First 3-D structure
Dextranase (Dex49A) from Talaromyces minioluteum by X-ray crystallography (PDB ID 1OGM) [5].

References

Error fetching PMID 10540747:
Error fetching PMID 12962629:
Error fetching PMID 18155243:
Error fetching PMID 15560783:
Error fetching PMID 10521427:
Error fetching PMID 12022868:
Error fetching PMID 8502994:
Error fetching PMID 1859672:
Error fetching PMID 30919632:
Error fetching PMID 31788942:
Error fetching PMID 33127644:
Error fetching PMID 36592961:
  1. Error fetching PMID 10540747: [Mizuno1999]
  2. Sakano Y, Masuda N, and Kobayashi T. (1971). Hydrolysis of Pullulan by a Novel Enzyme from Aspergillus niger, Agric Biol Chem 1971;35(6):971-973. https://doi.org/10.1271/bbb1961.35.971

    [Sakano1971]
  3. Error fetching PMID 36592961: [Kitagawa2023]
  4. Helbert W, Poulet L, Drouillard S, Mathieu S, Loiodice M, Couturier M, Lombard V, Terrapon N, Turchetto J, Vincentelli R, and Henrissat B. (2019). Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A. 2019;116(13):6063-6068. DOI:10.1073/pnas.1815791116 | PubMed ID:30850540 [Helbert2019]
  5. Error fetching PMID 12962629: [Larsson2003]
  6. Error fetching PMID 15560783: [Akeboshi2004]
  7. Error fetching PMID 18155243: [Mizuno2008]
  8. Error fetching PMID 10521427: [vanSanten1999]
  9. Error fetching PMID 12022868: [Shimizu2002]
  10. Error fetching PMID 30919632: [Ren2019]
  11. Error fetching PMID 31788942: [Itoh2020]
  12. Error fetching PMID 33127644: [McGuire2020]
  13. Error fetching PMID 8502994: [Yoder1993]
  14. Error fetching PMID 1859672: [Okushima1991]

All Medline abstracts: PubMed