CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Glycoside Hydrolase Family 116

From CAZypedia
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH116
Clan GH-x
Mechanism retaining
Active site residues known
CAZy DB link
https://www.cazy.org/GH116.html


Substrate specificities

This family of glycoside hydrolases was recently discovered characterising a new β-glucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus [1]. This enzyme is distantly related to the human non-lysosomal bile acid b-glucosidase GBA2, also known as glucocerebrosidase [2]. GH116 contains acid β-glucosidase (EC 3.2.1.45), β-glucosidase (EC 3.2.1.21) and β-xylosidase (EC 3.2.1.37) from the three domains of life.


Kinetics and Mechanism

Content is to be added here.


Catalytic Residues

Content is to be added here.


Three-dimensional structures

Content is to be added here.


Family Firsts

First stereochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [3].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [4].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [5].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [6].

References

  1. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n | PubMed ID:17323919 [Comfort2007]
  2. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171-1202. DOI: 10.1021/cr00105a006

    [Sinnott1990]
  3. He S and Withers SG. (1997). Assignment of sweet almond beta-glucosidase as a family 1 glycosidase and identification of its active site nucleophile. J Biol Chem. 1997;272(40):24864-7. DOI:10.1074/jbc.272.40.24864 | PubMed ID:9312086 [He1999]
  4. [StickWilliams]

All Medline abstracts: PubMed