CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Glycoside Hydrolase Family 116

From CAZypedia
Revision as of 22:25, 21 July 2010 by Harry Brumer (talk | contribs) (fixed spacing)
Jump to navigation Jump to search
Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH116
Clan none
Mechanism retaining
Active site residues known
CAZy DB link
https://www.cazy.org/GH116.html


Substrate specificities

This family of glycoside hydrolases was recently discovered characterising a new β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus [1] and contains acid β-glucosidase (EC 3.2.1.45), β-glucosidase (EC 3.2.1.21) and β-xylosidase (EC 3.2.1.37) activities from the three domains of life. The β-glycosidase from S. solfataricus (SSO1353) is specific for the gluco- and xylosides β-bound to hydrophobic groups that are hydrolyzed by following a retaining reaction mechanism. SSO1353 is distantly related to the human non-lysosomal bile acid β-glucosidase GBA2, also known as glucocerebrosidase, involved in the catabolism of glucosylceramide, which is then converted to sphingomyelin [2]. SSO1353 has substrate specificity and inhibitor sensitivity slightly different from those of GBA2. In fact, the archaeal enzyme can hydrolyze both aryl β-gluco and β-xylosides and it is inhibited by both N-butyldeoxynojirimycin (NB-DNJ) and conduritol β-epoxide (CBE) [1]. Instead, GBA2 is inactive on methylumbellyferyl-β-D-xylopyranoside and is relatively insensitive to CBE [2].

Kinetics and Mechanism

The enzymes of this family are retaining glycoside hydrolases and follow the classical Koshland double-displacement mechanism [3]. The stereochemistry of hydrolysis has been demonstrated by 1H-13C NMR spectroscopy analysis of the interglycosidic linkage of disaccharides formed by the transglycosylation reaction of SSO1353 with 4NP-β-Xyl [1].

Catalytic Residues

The catalytic residues were identified in the S. solfataricus β-glycosidase [1]. The catalytic nucleophile was identified as Glu335 through trapping of the 2-deoxy-2-fluoroglucosyl-enzyme intermediate and MS/MS analysis. The general acid/base catalyst role was assigned to Asp462 through mechanistic analysis of a mutant at that position, which included azide rescue experiments.

Three-dimensional structures

There is currently no 3-D structure representative for GH116 (see GH116 at CAZy DB).

Family Firsts

First stereochemistry determination
S. solfataricus β-glycosidase by NMR analysis of the interglycosidic linkage of disaccharides formed by the transglycosylation reaction with 4NP-β-Xyl [1].
First catalytic nucleophile identification
S. solfataricus β-glycosidase by 2-deoxy-2-fluoroglucose labeling [1].
First general acid/base residue identification
S. solfataricus β-glycosidase by azide rescue with mutant [1].
First 3-D structure
Presently unknown (see GH116 at CAZy DB).

References

  1. Cobucci-Ponzano B, Aurilia V, Riccio G, Henrissat B, Coutinho PM, Strazzulli A, Padula A, Corsaro MM, Pieretti G, Pocsfalvi G, Fiume I, Cannio R, Rossi M, and Moracci M. (2010). A new archaeal beta-glycosidase from Sulfolobus solfataricus: seeding a novel retaining beta-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2. J Biol Chem. 2010;285(27):20691-703. DOI:10.1074/jbc.M109.086470 | PubMed ID:20427274 [PMID20427274]
  2. Boot RG, Verhoek M, Donker-Koopman W, Strijland A, van Marle J, Overkleeft HS, Wennekes T, and Aerts JM. (2007). Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem. 2007;282(2):1305-12. DOI:10.1074/jbc.M610544200 | PubMed ID:17105727 [PMID17105727]
  3. Koshland DE Jr: Stereochemistry and the mechanism of enzyme reactions. Biol Rev 1953, 28:416-436.

    [Koshland]

All Medline abstracts: PubMed