CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Glycoside Hydrolase Family 26
Substrate specificities
This family consists primarily of endo-beta1,4-mannanases, although a recent exo-acting beta- mannanase has been described. The family also contains enzymes that display beta-1,3:1,4-glucanase [1] and beta-1,3 xylanase activities.
Kinetics and Mechanism
Family GH26 enzymes are “retainers”, as shown by NMR and follow a classical Koshland double-displacement mechanism. Pre-steady state kinetics using activated substrates revealed the two phases of the reaction; the rapid initial glycosylation step (only with good leaving groups) followed by the slower deglycosylation. It should be noted that the use of substrates with a good leaving group result in a very low apparent KM, particularly with the acid-base mutant. This does not reflect tight affinity but simply that the glycosylation step (k2) is much quicker than the deglycosylation step (k3) {Bolam, 1996 #7}.
== Catalytic Residues ==\ Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
The catalytic residues were first identified in the endo-beta1,4-mannanase CjMan26A. The catalytic acid-base is the glutamate Glu320, which is separated in sequence by ~100 residues from the catalytic nucleophile, Glu212. The catalytic nucleophile was identified by site-directed mutagenesis in harness with the kinetics of 2,4-dintrophenyl-beta-mannobioside hydrolysis which, although very slow was associated with a dramatic decrease in KM [1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 13, 13, 14, 15, 16, 17, 18, 19, 19, 20, 20, 21, 22, 23, 24, 25, 25, 25, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 52, 53, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78].
- First catalytic nucleophile identification
- First general acid/base residue identification
- First 3-D structure
References
- Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, and Kelly RM. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry. 2007;46(11):3319-30. DOI:10.1021/bi061521n |
- Araki T, Hashikawa S, and Morishita T. (2000). Cloning, sequencing, and expression in Escherichia coli of the new gene encoding beta-1,3-xylanase from a marine bacterium, Vibrio sp. strain XY-214. Appl Environ Microbiol. 2000;66(4):1741-3. DOI:10.1128/AEM.66.4.1741-1743.2000 |