CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Carbohydrate Binding Module Family 32
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Elizabeth Ficko-Blean^^^
- Responsible Curator: ^^^Al Boraston^^^
CAZy DB link | |
https://www.cazy.org/CBM32.html |
Ligand specificities
In 1994 the first CBM32 structure and canonical ligand specificity for D-galactose were determined from a fungal galactose oxidase[1]
Following that, the structure and galactose binding specificity of a CBM32 was described for a multi-modular sialidase produced by Micromonospora viridifaciens[2].
A CBM32 from a Cellvibrio mixtus family 16 glycoside hydrolase binds laminarin and pustulan [3]
A CBM32 from a Clostridium thermocellum mannanase has demonstrated binding on the non-reducing end of β-mannans and β-1,4-linked mannooligosaccharides[4]
A periplasmic CBM32 from Yersinia enterolitica binds polygalaturonic acid components of pectin [5].
The Clostridium perfringens CBM32s have been well studied and many of their ligand specificities determined as follows: D-galactose, N-acetyl-D-galactosamine[6, 7, 8], D-galactose-β-1,4-N-acetyl-D-glucosamine (LacNAc), L-fucose-α-1,2-D-galactose-β-1,4-N-acetyl-D-glucosamine (type II blood group H-trisaccharide) [8] N-acetyl-D-glucosamine, N-acetyl-D-glucosamine-β-1,3-N-acetyl-D-galactosamine, N-acetyl-D-glucosamine-β-1,2-D-mannose, N-acetyl-D-glucosamine-β-1,3-D-mannose (non-biological) [9], N-acetyl-D-glucosamine-α-1,4-D-galactose[7]
Some members of the family 32 CBMs have demonstrated a degree of promiscuity in their binding, these include CpCBM32-2 from the NagH enzyme and CpCBM32C from the NagJ enzyme, both produced by Clostridium perfringens[8, 9].
Please see these references for an essential introduction to the CAZy classification system: [10, 11]. CBMs, in particular, have been extensively reviewed [12, 13, 14, 15].
Structural Features
Content in this section should include, in paragraph form, a description of:
- Fold: beta sandwich
- Type: Type C and properties
- Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.
Functionalities
Content in this section should include, in paragraph form, a description of:
- Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
- Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.) CBM32s are often but not always appended to carbohydrate active enzymes. There are now examples of CBM32s that are independant of a catalytic module. In enteric bacteria the CBM32 may occur more than once in the same enzyme and they may or may not share the same ligand specifities.
- Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.
Family Firsts
- First Identified
- Insert archetype here, possibly including very brief synopsis.
- First Structural Characterization
- Insert archetype here, possibly including very brief synopsis.
References
- Ito N, Phillips SE, Yadav KD, and Knowles PF. (1994). Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol. 1994;238(5):794-814. DOI:10.1006/jmbi.1994.1335 |
- Gaskell A, Crennell S, and Taylor G. (1995). The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure. 1995;3(11):1197-205. DOI:10.1016/s0969-2126(01)00255-6 |
- Centeno MS, Goyal A, Prates JA, Ferreira LM, Gilbert HJ, and Fontes CM. (2006). Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus. FEMS Microbiol Lett. 2006;265(1):26-34. DOI:10.1111/j.1574-6968.2006.00464.x |
- Mizutani K, Fernandes VO, Karita S, Luís AS, Sakka M, Kimura T, Jackson A, Zhang X, Fontes CM, Gilbert HJ, and Sakka K. (2012). Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Appl Environ Microbiol. 2012;78(14):4781-7. DOI:10.1128/AEM.07457-11 |
- Abbott DW, Hrynuik S, and Boraston AB. (2007). Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. J Mol Biol. 2007;367(4):1023-33. DOI:10.1016/j.jmb.2007.01.030 |
- Boraston AB, Ficko-Blean E, and Healey M. (2007). Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry. 2007;46(40):11352-60. DOI:10.1021/bi701317g |
- Ficko-Blean E, Stuart CP, Suits MD, Cid M, Tessier M, Woods RJ, and Boraston AB. (2012). Carbohydrate recognition by an architecturally complex α-N-acetylglucosaminidase from Clostridium perfringens. PLoS One. 2012;7(3):e33524. DOI:10.1371/journal.pone.0033524 |
- Ficko-Blean E and Boraston AB. (2006). The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem. 2006;281(49):37748-57. DOI:10.1074/jbc.M606126200 |
- Ficko-Blean E and Boraston AB. (2009). N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. J Mol Biol. 2009;390(2):208-20. DOI:10.1016/j.jmb.2009.04.066 |
-
Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochem. J. (BJ Classic Paper, online only). DOI: 10.1042/BJ20080382
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 |
- Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 |
- Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 |
- Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 |
- Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y |