CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

User:Wataru Saburi

From CAZypedia
Revision as of 22:42, 16 March 2015 by Wataru Saburi (talk | contribs)
Jump to navigation Jump to search

[[

Image:Saburi2.jpg|200px|right]]

Wataru Saburi is an assistant professor at Laboratory of Biochemistry in Research Faculty of Agriculture, Hokkaido University (Sapporo, Japan). He obtained Ph. D from Graduate School of Agriculture, Hokkaido University in 2006, under the supervision of Professor Atsuo Kimura. He joined the Research Institute of Nihon Shokuhin Kako Co. Ltd. as a researcher (2006-2010), and developed functional oligosaccharides produced from starch. His research interests are structures and functions of carbohydrate active enzymes and efficient synthesis of functional oligosaccharides. He has studied about

  • GH1 rice β-glucosidase [1]
  • GH13 Bacillus sp. AAH-31 α-amylase [2, 3]
  • GH13 Streptococcus mutans dextran glucosidase [4, 5, 6, 7, 8, 9, 10]
  • GH13 Halomonas sp. H11 α-glucosidase [11]
  • GH13 Bacillus clarkii γ-cyclodextrinase [12]
  • GH31 Bacillus sp. AHU 2001 α-glucosidase BspAG31A [13]
  • GH94 Ruminococcus albus cellobiose phosphorylase [14, 15]
  • GH94 Ruminococcus albus cellodextrin phosphorylase [16]
  • GH130 Ruminococcus albus 4-O-β-mannosylglucose phosphorylase (RaMP1) [17]
  • GH130 Rhodothermus marinus 4-O-β-mannosylglucose phosphorylase [18]
  • GH130 Cellvibrio vulgaris 4-O-β-mannosylglucose phosphorylase [19]
  • GH130 Ruminococcus albus β-1,4-mannooligosaccharide phosphorylase (RaMP2) [17]



  1. Himeno N, Saburi W, Wakuta S, Takeda R, Matsuura H, Nabeta K, Sansenya S, Ketudat Cairns JR, Mori H, Imai R, and Matsui H. (2013). Identification of rice β-glucosidase with high hydrolytic activity towards salicylic acid β-D-glucoside. Biosci Biotechnol Biochem. 2013;77(5):934-9. DOI:10.1271/bbb.120889 | PubMed ID:23649259 [Himeno2013]
  2. Kim DH, Morimoto N, Saburi W, Mukai A, Imoto K, Takehana T, Koike S, Mori H, and Matsui H. (2012). Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci Biotechnol Biochem. 2012;76(7):1378-83. DOI:10.1271/bbb.120164 | PubMed ID:22785486 [Kim2012]
  3. Saburi W, Morimoto N, Mukai A, Kim DH, Takehana T, Koike S, Matsui H, and Mori H. (2013). A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes. Biosci Biotechnol Biochem. 2013;77(9):1867-73. DOI:10.1271/bbb.130284 | PubMed ID:24018662 [Saburia2013]
  4. Saburi W, Mori H, Saito S, Okuyama M, and Kimura A. (2006). Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim Biophys Acta. 2006;1764(4):688-98. DOI:10.1016/j.bbapap.2006.01.012 | PubMed ID:16503208 [Saburi2006]
  5. Saburi W, Hondoh H, Unno H, Okuyama M, Mori H, Nakada T, Matsuura Y, and Kimura A. (2007). Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 9):774-6. DOI:10.1107/S174430910703936X | PubMed ID:17768352 [Saburi2007]
  6. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, and Kimura A. (2008). Substrate recognition mechanism of alpha-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol. 2008;378(4):913-22. DOI:10.1016/j.jmb.2008.03.016 | PubMed ID:18395742 [Hondoh2008]
  7. Kobayashi M, Hondoh H, Mori H, Saburi W, Okuyama M, and Kimura A. (2011). Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans. Biosci Biotechnol Biochem. 2011;75(8):1557-63. DOI:10.1271/bbb.110256 | PubMed ID:21821929 [Kobayashi2011]
  8. Saburi W, Kobayashi M, Mori H, Okuyama M, and Kimura A. (2013). Replacement of the catalytic nucleophile aspartyl residue of dextran glucosidase by cysteine sulfinate enhances transglycosylation activity. J Biol Chem. 2013;288(44):31670-7. DOI:10.1074/jbc.M113.491449 | PubMed ID:24052257 [Saburib2013]
  9. Saburi W, Rachi-Otsuka H, Hondoh H, Okuyama M, Mori H, and Kimura A. (2015). Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase. FEBS Lett. 2015;589(7):865-9. DOI:10.1016/j.febslet.2015.02.023 | PubMed ID:25728274 [Saburi2015b]
  10. Kobayashi M, Saburi W, Nakatsuka D, Hondoh H, Kato K, Okuyama M, Mori H, Kimura A, and Yao M. (2015). Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett. 2015;589(4):484-9. DOI:10.1016/j.febslet.2015.01.005 | PubMed ID:25595454 [Kobayashi2015]
  11. Ojima T, Saburi W, Yamamoto T, and Kudo T. (2012). Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol. Appl Environ Microbiol. 2012;78(6):1836-45. DOI:10.1128/AEM.07514-11 | PubMed ID:22226947 [Ojima2012]
  12. Nakagawa Y, Saburi W, Takada M, Hatada Y, and Horikoshi K. (2008). Gene cloning and enzymatic characteristics of a novel gamma-cyclodextrin-specific cyclodextrinase from alkalophilic Bacillus clarkii 7364. Biochim Biophys Acta. 2008;1784(12):2004-11. DOI:10.1016/j.bbapap.2008.08.022 | PubMed ID:18824139 [Nakagawa2008]
  13. Saburi W, Okuyama M, Kumagai Y, Kimura A, and Mori H. (2015). Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie. 2015;108:140-8. DOI:10.1016/j.biochi.2014.11.010 | PubMed ID:25450253 [Saburi2014]
  14. Hamura K, Saburi W, Abe S, Morimoto N, Taguchi H, Mori H, and Matsui H. (2012). Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Biosci Biotechnol Biochem. 2012;76(4):812-8. DOI:10.1271/bbb.110954 | PubMed ID:22484959 [Hamura2012]
  15. Hamura K, Saburi W, Matsui H, and Mori H. (2013). Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Carbohydr Res. 2013;379:21-5. DOI:10.1016/j.carres.2013.06.010 | PubMed ID:23845516 [Hamura2013]
  16. Sawano T, Saburi W, Hamura K, Matsui H, and Mori H. (2013). Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. FEBS J. 2013;280(18):4463-73. DOI:10.1111/febs.12408 | PubMed ID:23802549 [Sawano2013]
  17. Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, and Matsui H. (2012). Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J Biol Chem. 2012;287(50):42389-99. DOI:10.1074/jbc.M112.390336 | PubMed ID:23093406 [Kawahara2012]
  18. Jaito N, Saburi W, Odaka R, Kido Y, Hamura K, Nishimoto M, Kitaoka M, Matsui H, and Mori H. (2014). Characterization of a thermophilic 4-O-β-D-mannosyl-D-glucose phosphorylase from Rhodothermus marinus. Biosci Biotechnol Biochem. 2014;78(2):263-70. DOI:10.1080/09168451.2014.882760 | PubMed ID:25036679 [Jaito2014]
  19. Saburi W, Tanaka Y, Muto H, Inoue S, Odaka R, Nishimoto M, Kitaoka M, and Mori H. (2015). Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA. Biosci Biotechnol Biochem. 2015;79(6):969-77. DOI:10.1080/09168451.2015.1012146 | PubMed ID:25704402 [Saburi2015]

All Medline abstracts: PubMed