CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Carbohydrate Binding Module Family 1

From CAZypedia
Revision as of 09:54, 24 November 2017 by Markus Linder (talk | contribs)
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


CAZy DB link
https://www.cazy.org/CBM1.html

Ligand specificities

The family 1 CBMs are found in fungal enzymes only. Early work showed that family 1 CBMs bind to cellulose [1] and that some, but not all, family 1 CBMs bind to chitin as well [2]. There is also a contribution of CBMs in binding to lignin, but this binding was shown to be non-specific as it was easily blocked by surfactants [3]. Based on NMR measurements it was shown that family 1 CBMs could bind to cellohexaose, but not to shorter cellotrisoe and cellobiose [4].


Mention here all major natural ligand specificities that are found within a given family (also plant or mammalian origin). Certain linkages and promiscuity would also be mentioned here if biologically relevant.

Note: Here is an example of how to insert references in the text, together with the "biblio" section below: Please see these references for an essential introduction to the CAZy classification system: [5, 6]. CBMs, in particular, have been extensively reviewed [7, 8, 9, 10].

Structural Features

Content in this section should include, in paragraph form, a description of:

  • Fold: Structural fold (beta trefoil, beta sandwich, etc.)
  • Type: Include here Type A, B, or C and properties
  • Features of ligand binding: Describe CBM binding pocket location (Side or apex) important residues for binding (W, Y, F, subsites), interact with reducing end, non-reducing end, planar surface or within polysaccharide chains. Include examples pdb codes. Metal ion dependent. Etc.

Functionalities

Content in this section should include, in paragraph form, a description of:

  • Functional role of CBM: Describe common functional roles such as targeting, disruptive, anchoring, proximity/position on substrate.
  • Most Common Associated Modules: 1. Glycoside Hydrolase Activity; 2. Additional Associated Modules (other CBM, FNIII, cohesin, dockerins, expansins, etc.)
  • Novel Applications: Include here if CBM has been used to modify another enzyme, or if a CBM was used to label plant/mammalian tissues? Etc.

Family Firsts

First Identified
Insert archetype here, possibly including very brief synopsis.
First Structural Characterization
Insert archetype here, possibly including very brief synopsis.

References

  1. Johansson, G., Ståhlberg, J., Lindeberg, G., Engström, Å., Pettersson, G. (1989) solated Fungal Cellulose Terminal Domains and a Synthetic Minimum Analogue Bind to Cellulose. FEBS Lett. , 243, 389–393.

    [Johansson1989]
  2. Linder, M.; Salovuori, I.; Ruohonen, L.; Teeri, T. T. (1996) Characterization of a Double Cellulose-Binding Domain. Synergistic High Affinity Binding to Crystalline Cellulose. J. Biol. Chem. 271, 21268–21272

    [Linder1996]
  3. Palonen, H.; Tjerneld, F.; Zacchi, G.; Tenkanen, M. (2004) Adsorption of Trichoderma Reesei CBH I and EG II and Their Catalytic Domains on Steam Pretreated Softwood and Isolated Lignin. J. Biotechnol., 107, 65–72.

    [Palonen2004]
  4. Mattinen, M. L.; Linder, M.; Teleman, A.; Annila, A. (1997) Interaction between Cellohexaose and Cellulose Binding Domains from Trichoderma Reesei Cellulases. FEBS Lett. 407, 291–296.

    [Mattinen1997]
  5. Davies, G.J. and Sinnott, M.L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. The Biochemist, vol. 30, no. 4., pp. 26-32. Download PDF version.

    [DaviesSinnott2008]
  6. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 | PubMed ID:18838391 [Cantarel2009]
  7. Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 | PubMed ID:15214846 [Boraston2004]
  8. Hashimoto H (2006). Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci. 2006;63(24):2954-67. DOI:10.1007/s00018-006-6195-3 | PubMed ID:17131061 [Hashimoto2006]
  9. Shoseyov O, Shani Z, and Levy I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283-95. DOI:10.1128/MMBR.00028-05 | PubMed ID:16760304 [Shoseyov2006]
  10. Guillén D, Sánchez S, and Rodríguez-Sanoja R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241-9. DOI:10.1007/s00253-009-2331-y | PubMed ID:19908036 [Guillen2010]
  11. [96]
  12. Kraulis, P. J.; Clore, G. M.; Nilges, M.; Jones, T. A.; Pettersson, G.; Knowles, J.; Gronenborn, (1989) Determination of the Three-Dimensional Solution Structure of the C-Terminal Domain of Cellobiohydrolase I from Trichoderma Reesei. A Study Using Nuclear Magnetic Resonance and Hybrid Distance Geometry-Dynamical Simulated Annealing. Biochemistry 1989, 28, 7241–7257.

    [Kraulis1989]
  13. Norton, R. S.; Pallaghy, P. K. (1989) The Cystine Knot Structure of Ion Channel Toxins and Related Polypeptides. Toxicon 36, 1573–1583

    [Norton1989]

All Medline abstracts: PubMed