CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
User:Anne Tondervik
Revision as of 00:28, 18 September 2020 by Finn Aachmann (talk | contribs)
References
- Wimmer R, Aachmann FL, Larsen KL, and Petersen SB. (2002). NMR diffusion as a novel tool for measuring the association constant between cyclodextrin and guest molecules. Carbohydr Res. 2002;337(9):841-9. DOI:10.1016/s0008-6215(02)00066-6 |
- Otzen DE, Knudsen BR, Aachmann F, Larsen KL, and Wimmer R. (2002). Structural basis for cyclodextrins' suppression of human growth hormone aggregation. Protein Sci. 2002;11(7):1779-87. DOI:10.1110/ps.0202702 |
- Aachmann FL, Otzen DE, Larsen KL, and Wimmer R. (2003). Structural background of cyclodextrin-protein interactions. Protein Eng. 2003;16(12):905-12. DOI:10.1093/protein/gzg137 |
- Aachmann FL, Svanem BI, Güntert P, Petersen SB, Valla S, and Wimmer R. (2006). NMR structure of the R-module: a parallel beta-roll subunit from an Azotobacter vinelandii mannuronan C-5 epimerase. J Biol Chem. 2006;281(11):7350-6. DOI:10.1074/jbc.M510069200 |
- Rozeboom HJ, Bjerkan TM, Kalk KH, Ertesvåg H, Holtan S, Aachmann FL, Valla S, and Dijkstra BW. (2008). Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J Biol Chem. 2008;283(35):23819-28. DOI:10.1074/jbc.M804119200 |
- Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VG, and Vaaje-Kolstad G. (2012). NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A. 2012;109(46):18779-84. DOI:10.1073/pnas.1208822109 |
- Gawin A, Tietze L, Aarstad OA, Aachmann FL, Brautaset T, and Ertesvåg H. (2020). Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family. Sci Rep. 2020;10(1):12470. DOI:10.1038/s41598-020-68789-3 |
- Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, and Eijsink VG. (2013). Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A. 2013;1271(1):144-52. DOI:10.1016/j.chroma.2012.11.048 |
- Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, and Horn SJ. (2014). A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014;289(5):2632-42. DOI:10.1074/jbc.M113.530196 |
- Courtade G, Wimmer R, Røhr ÅK, Preims M, Felice AK, Dimarogona M, Vaaje-Kolstad G, Sørlie M, Sandgren M, Ludwig R, Eijsink VG, and Aachmann FL. (2016). Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci U S A. 2016;113(21):5922-7. DOI:10.1073/pnas.1602566113 |
- Courtade G, Forsberg Z, Heggset EB, Eijsink VGH, and Aachmann FL. (2018). The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. J Biol Chem. 2018;293(34):13006-13015. DOI:10.1074/jbc.RA118.004269 |
- Courtade G, Ciano L, Paradisi A, Lindley PJ, Forsberg Z, Sørlie M, Wimmer R, Davies GJ, Eijsink VGH, Walton PH, and Aachmann FL. (2020). Mechanistic basis of substrate-O(2) coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Proc Natl Acad Sci U S A. 2020;117(32):19178-19189. DOI:10.1073/pnas.2004277117 |
- Tøndervik A, Klinkenberg G, Aachmann FL, Svanem BI, Ertesvåg H, Ellingsen TE, Valla S, Skjåk-Bræk G, and Sletta H. (2013). Mannuronan C-5 epimerases suited for tailoring of specific alginate structures obtained by high-throughput screening of an epimerase mutant library. Biomacromolecules. 2013;14(8):2657-66. DOI:10.1021/bm4005194 |
- Rieder A, Grimmer S, Aachmann FL, Westereng B, Kolset SO, and Knutsen SH. (2013). Generic tools to assess genuine carbohydrate specific effects on in vitro immune modulation exemplified by β-glucans. Carbohydr Polym. 2013;92(2):2075-83. DOI:10.1016/j.carbpol.2012.11.092 |
- Arlov Ø, Aachmann FL, Sundan A, Espevik T, and Skjåk-Bræk G. (2014). Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees. Biomacromolecules. 2014;15(7):2744-50. DOI:10.1021/bm500602w |
- Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, and Christensen BE. (2016). Efficient functionalization of alginate biomaterials. Biomaterials. 2016;80:146-156. DOI:10.1016/j.biomaterials.2015.11.043 |
- Omtvedt LA, Dalheim MØ, Nielsen TT, Larsen KL, Strand BL, and Aachmann FL. (2019). Efficient Grafting of Cyclodextrin to Alginate and Performance of the Hydrogel for Release of Model Drug. Sci Rep. 2019;9(1):9325. DOI:10.1038/s41598-019-45761-4 |
- Vikøren Mo I, Feng Y, Øksnes Dalheim M, Solberg A, Aachmann FL, Schatz C, and Christensen BE. (2020). Activation of enzymatically produced chitooligosaccharides by dioxyamines and dihydrazides. Carbohydr Polym. 2020;232:115748. DOI:10.1016/j.carbpol.2019.115748 |
- Mo IV, Dalheim MØ, Aachmann FL, Schatz C, and Christensen BE. (2020). 2,5-Anhydro-d-Mannose End-Functionalized Chitin Oligomers Activated by Dioxyamines or Dihydrazides as Precursors of Diblock Oligosaccharides. Biomacromolecules. 2020;21(7):2884-2895. DOI:10.1021/acs.biomac.0c00620 |
- Westereng B, Kračun SK, Leivers S, Arntzen MØ, Aachmann FL, and Eijsink VGH. (2020). Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase. Sci Rep. 2020;10(1):13197. DOI:10.1038/s41598-020-69951-7 |
- Khong TT, Aachmann FL, and Vårum KM. (2012). Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution. Carbohydr Res. 2012;352:82-7. DOI:10.1016/j.carres.2012.01.028 |
- Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, Aachmann FL, Westereng B, and Abou Hachem M. (2018). Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol. 2018;3(5):570-580. DOI:10.1038/s41564-018-0132-8 |