CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Syn/anti lateral protonation
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Wim Nerinckx^^^
- Responsible Curator: ^^^Spencer Williams^^^
Overview
This page will provide a table (and eventually a full lexicon article) on the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and the more recent summary by Nerinckx et al. [2].
Table
This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the page tab above the page title.
Family | Clan | Structure fold | Anomeric specificity | Mechanism | Syn/anti protonator | Example PDB ID | Enzyme | Organism | Ligand | General acid | Nucleophile or General base | Primary reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GH1 | A | (β/α)8 | beta | retaining | anti | 4pbg | 6-phospho-beta-galactosidase | Lactococcus lactis | product | Glu160 | Glu375 | [3] |
GH2 | A | (β/α)8 | beta | retaining | anti | 1jz0 | beta-galactosidase | Escherechia coli | 2-F-galactosyl | Glu461 | Glu537 | [4] |
GH3 | none | (β/α)8 | beta | retaining | anti | 1iew | exo-1,3-1,4-glucanase | Hordeum vulgare | 2-F-glucosyl | Glu491 | Asp285 | [5] |
GH5 | A | (β/α)8 | beta | retaining | anti | 1iew | endo-1,4-glucanase | Bacillus agaradhaerans | 2-F-glucosyl | Glu129 | Glu228 | [6] |
GH6 | none | (β/α)8 | beta | inverting | syn | 1ocn | cellobiohydrolase | Humicola insolens | Glc-isofagomine | Asp226 | debated | [7] |
GH7 | B | β-jelly roll | beta | retaining | syn | 1ovw | endo-1,4-glucanase | Fusarium oxysporum | Michaelis thio-Glc5 | Glu202 | Glu197 | [8] |
GH8 | M | (α/α)6 | beta | inverting | anti | 1kwf | endo-1,4-glucanase | Clostridium thermocellum | Michaelis | Glu95 | Asp278 | [9] |
GH9 | none | (α/α)6 | beta | inverting | syn | 3tf4, 4tf4 | cellulase | Thermomonospora fusca | product | Glu424 | Asp55, Asp58 | [10] |
GH10 | A | (β/α)8 | beta | retaining | anti | 2xyl | xylanase B (Cex) | Cellulomonas fimi | Xyl-2-F-xylosyl | Glu127 | Glu233 | [11] |
GH11 | C | β-jelly roll | beta | retaining | syn | 1bvv | xylanase | Bacillus circulans | Xyl-2-F-xylosyl | Glu172 | Glu78 | [12] |
GH12 | C | β-jelly roll | beta | retaining | syn | 2nlr | endo-1,4-glucanase | Streptomyces lividans | Glc2-2-F-glucosyl | Glu203 | Glu120 | [13] |
GH13 | H | (β/α)8 | alpha | retaining | anti | 1ckx | beta-cyclodextrin glucanotransferase | Bacillus circulans | Michaelis | Glu257 | Asp229 | [14] |
GH14 | none | (β/α)8 | alpha | inverting | syn | 1b9z | beta-amylase | Bacillus cereus | product | Glu172 | Glu367 | [15] |
GH15 | L | (α/α)6 | alpha | inverting | syn | 1gah | glucoamylase | Aspergillus awamori | acarbose | Glu179 | Glu400 | [16] |
GH16 | B | β-jelly roll | beta | retaining | syn | 1urx | beta-agarase A | Zobellia galactanivorans | product | Glu152 | Glu147 | [17] |
GH18 | K | (β/α)8 | beta | retaining | anti | 1ffr | chitinase A | Serratia marcescens | Michaelis (NAG)6 | Glu315 | internal | [18] |
GH20 | K | (β/α)8 | beta | retaining | anti | 1c7s | chitobiase | Serratia marcescens | Michaelis chitobiose | Glu540 | internal | [19] |
GH22 | none | lysozyme type | beta | retaining | syn | 1h6m | lysozyme C | Gallus gallus | Chit-2-F-chitosyl | Glu35 | Asp52 | [20] |
GH23 | none | lysozyme type | beta | inverting | syn | 1lsp | lysozyme G | Cygnus atratus | Bulgecin A | Glu73 | internal | [21] |
GH24 | I | α + β | beta | inverting | syn | 148l | lysozyme E | Bacteriophage T4 | chitobiosyl | Glu11 | Glu26 | [22] |
GH26 | A | (β/α)8 | beta | retaining | anti | 1gw1 | mannanase A | Cellvibrio japonicus | (Man2)-2-F-mannosyl | Glu212 | Glu320 | [23] |
GH27 | D | (β/α)8 | alpha | retaining | anti | 1ktc | α-N-acetyl galactosaminidase | Gallus gallus | NAGal | Asp201 | Asp410 | [24] |
GH29 | none | (β/α)8 | alpha | retaining | syn | 1hl9 | α-L-fucosidase | Thermotoga maritima | 2-F-fucopyranosyl | Glu266 | Asp224 | [25] |
GH31 | D | (β/α)8 | alpha | retaining | anti | 1xsk | α-xylosidase | Escherechia coli | 5-F-xylosyl | Asp482 | Asp416 | [26] |
GH33 | E | 6-fold β-propeller | alpha | retaining | anti | 1s0k | trans-sialidase | Trypanosoma cruzi | 2-F,3-F-sialosyl | Asp59 | Tyr342 | [27] |
References
-
Heightman, T.D. and Vasella, A.T. (1999) Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angewandte Chemie-International Edition 38(6), 750-770. Article online.
- Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 |
- Wiesmann C, Hengstenberg W, and Schulz GE. (1997). Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997;269(5):851-60. DOI:10.1006/jmbi.1997.1084 |
- Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, and Matthews BW. (2001). A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry. 2001;40(49):14781-94. DOI:10.1021/bi011727i |
- Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 |
- Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 |
- Varrot A, Macdonald J, Stick RV, Pell G, Gilbert HJ, and Davies GJ. (2003). Distortion of a cellobio-derived isofagomine highlights the potential conformational itinerary of inverting beta-glucosidases. Chem Commun (Camb). 2003(8):946-7. DOI:10.1039/b301592k |
- Sulzenbacher G, Driguez H, Henrissat B, Schülein M, and Davies GJ. (1996). Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry. 1996;35(48):15280-7. DOI:10.1021/bi961946h |
- Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 |
- Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, and Wilson DB. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol. 1998;180(7):1709-14. DOI:10.1128/JB.180.7.1709-1714.1998 |
- Notenboom V, Birsan C, Warren RA, Withers SG, and Rose DR. (1998). Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation. Biochemistry. 1998;37(14):4751-8. DOI:10.1021/bi9729211 |
- Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, and Brayer GD. (1999). Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry. 1999;38(17):5346-54. DOI:10.1021/bi982946f |
- Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i |
- Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 |
- Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, and Utsumi S. (1999). Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochemistry. 1999;38(22):7050-61. DOI:10.1021/bi9829377 |
- Aleshin AE, Stoffer B, Firsov LM, Svensson B, and Honzatko RB. (1996). Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Biochemistry. 1996;35(25):8319-28. DOI:10.1021/bi960321g |
- Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 |
- Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, and Petratos K. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40(38):11338-43. DOI:10.1021/bi010505h |
- Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, and Oppenheim AB. (2000). Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000;300(3):611-7. DOI:10.1006/jmbi.2000.3906 |
- Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 |
- Karlsen S, Hough E, Rao ZH, and Isaacs NW. (1996). Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):105-14. DOI:10.1107/S0907444995008468 |
- Baldwin EP, Hajiseyedjavadi O, Baase WA, and Matthews BW. (1993). The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993;262(5140):1715-8. DOI:10.1126/science.8259514 |
- Ducros VM, Zechel DL, Murshudov GN, Gilbert HJ, Szabó L, Stoll D, Withers SG, and Davies GJ. (2002). Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. Angew Chem Int Ed Engl. 2002;41(15):2824-7. DOI:10.1002/1521-3773(20020802)41:15<2824::AID-ANIE2824>3.0.CO;2-G |
- Garman SC, Hannick L, Zhu A, and Garboczi DN. (2002). The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure. 2002;10(3):425-34. DOI:10.1016/s0969-2126(02)00726-8 |
- Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, and Bourne Y. (2004). Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem. 2004;279(13):13119-28. DOI:10.1074/jbc.M313783200 |
- Lovering AL, Lee SS, Kim YW, Withers SG, and Strynadka NC. (2005). Mechanistic and structural analysis of a family 31 alpha-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem. 2005;280(3):2105-15. DOI:10.1074/jbc.M410468200 |
- Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 |