CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Glycoside Hydrolase Family 29

From CAZypedia
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH 29
Clan none
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GH29.html


Substrate specificities

The glycoside hydrolases of this family are exo-acting α-fucosidases from archaeal, bacterial and eukaryotic origin. No other activities have been observed for GH29 family members. So fare the only other CAZY family containing α-fucosidases is family GH95. The human enzyme FucA1 is of medical interest because its deficiency leads to fucosidosis, an autosomal recessive lysosomal storage disease [1].


Kinetics and Mechanism

GH29 α-fucosidases are retaining enzymes following a classical Koshland double-displacement mechanism, as first proposed in 1987 for human liver α-fucosidase via burst kinetics experiments and using methanol as an alternative glycone acceptor to produce methyl-α-L-fucoside [2]. This has been further confirmed by 1H NMR monitoring of the reaction catalyzed by a α-L-fucosidase from Thermus sp. [3], and a α-L-fucosidase from the marine mollusc Pecten maximus[4], as well as by COSY and 1H-13C NMR spectroscopy analysis of the interglycosidic linkage of disaccharides formed by the transglycosylation action of Sulfolobus solfataricus α-L-fucosidase [5]. GH95 α-fucosidases, in contrast, operate with inversion of the anomeric configuration.


Catalytic Residues

           Normal.dotm   0   0   1   152   872   AFMB   7   1   1070   12.0               0   false      21      18 pt   18 pt   0   0      false   false   false                                    The catalytic nucleophile in GH29 was first identified in the Sulfolobus solfataricus α-L-fucosidase as Asp242 in the sequence VYFDWWI via chemical rescue of an inactive mutant with sodium azide (Cobucci-Ponzano, B., Trincone, A., Giordano, A., Rossi, M., and Moracci, M. Biochemistry 42, 9525–9531).  Concomitantly the catalytic nucleophile of Thermotoga maritima α-L-fucosidase was confirmed to be Asp224 in the sequence LWNDMGW through trapping of the 2-deoxy-2-fluorofucosyl-enzyme intermediate and subsequent peptide mapping via LC-MS/MS technologies, as well as by chemical rescue of an inactive mutant. The trapping of the 2-deoxy-2-fluorofucosyl-enzyme intermediate in Thermotoga maritima was corroborated by crystallographic studies.   


Three-dimensional structures

Content is to be added here.


Family Firsts

First sterochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation [6].
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation [7].
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation [8].
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation [3].

References

Error fetching PMID 2894306:
Error fetching PMID 3828350:
Error fetching PMID 12441672:
Error fetching PMID 12042250:
Error fetching PMID 12569098:
  1. Error fetching PMID 2894306: [1]
  2. Error fetching PMID 3828350: [2]
  3. Error fetching PMID 12441672: [3]
  4. Error fetching PMID 12042250: [4]
  5. Error fetching PMID 12569098: [5]

All Medline abstracts: PubMed