CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Glycoside Hydrolase Family 77
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author: ^^^Stefan Janecek^^^
- Responsible Curator: ^^^Stefan Janecek^^^
Glycoside Hydrolase Family GH77 | |
Clan | GH-H |
Mechanism | retaining |
Active site residues | known |
CAZy DB link | |
http://www.cazy.org/fam/GH77.html |
Substrate specificities
Glycoside hydrolase family 77 is the member of the α-amylase clan GH-H [1], together with GH13 and GH70 [2]. The family contains only one enzyme specificity - the amylomaltase (EC 2.4.1.25), that is known as disproportionating enzyme (D-enzyme) in plants [3] or 4-α-glucanotransferase in bacteria [4] and archaeons [5]. As of April 2010, it has more than 700 members [1] with more than 650 from Bacteria, ~10 from Archaea and a few tens from Eukarya (plants and green algae).
Amylomaltase catalyses the glucan-chain transfer from one α-1,4-glucan to another α-1,4-glucan (or to 4-hydroxyl group of glucose) or within a single linear glucan molecule to produce a cyclic α-1,4-glucan [3, 4, 5]. Cyclodextrin glucanotransferase, a member of the α-amylase family GH13, also produces cyclic α- 1,4-glucans (called cyclodextrins), but with a small degree of polymerization (from 6-8 referred to as α-, Normal 0 21 false false false SK X-NONE X-NONE MicrosoftInternetExplorer4 β- and γ-cyclodextrins
Kinetics and Mechanism
Catalytic Residues
Content is to be added here.
Three-dimensional structures
Content is to be added here.
Family Firsts
- First stereochemistry determination
- Cite some reference here, with a short (1-2 sentence) explanation.
- First catalytic nucleophile identification
- Cite some reference here, with a short (1-2 sentence) explanation.
- First general acid/base residue identification
- Cite some reference here, with a short (1-2 sentence) explanation.
- First 3-D structure
- Cite some reference here, with a short (1-2 sentence) explanation.
References
- Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, and Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233-8. DOI:10.1093/nar/gkn663 |
- MacGregor EA, Janecek S, and Svensson B. (2001). Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta. 2001;1546(1):1-20. DOI:10.1016/s0167-4838(00)00302-2 |
- Takaha T, Yanase M, Okada S, and Smith SM. (1993). Disproportionating enzyme (4-alpha-glucanotransferase; EC 2.4.1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J Biol Chem. 1993;268(2):1391-6. | Google Books | Open Library
- Terada Y, Fujii K, Takaha T, and Okada S. (1999). Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl Environ Microbiol. 1999;65(3):910-5. DOI:10.1128/AEM.65.3.910-915.1999 |
- Kaper T, Talik B, Ettema TJ, Bos H, van der Maarel MJ, and Dijkhuizen L. (2005). Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl Environ Microbiol. 2005;71(9):5098-106. DOI:10.1128/AEM.71.9.5098-5106.2005 |