CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Glycoside Hydrolase Family 9
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Authors: ^^^David Wilson^^^ and ^^^Breeanna Urbanowicz^^^
- Responsible Curator: ^^^David Wilson^^^
Glycoside Hydrolase Family GH9 | |
Clan | GH-G |
Mechanism | inverting |
Active site residues | known/known |
CAZy DB link | |
http://www.cazy.org/fam/GH9.html |
Substrate specificities
GH Family 9 is an inverting glycohydrolase family that mainly contains cellulases and is the second largest cellulase family. It contains mainly endoglucanases with a few processive endoglucanases. All of the processive endoglucanases contain a family 3c CBM rigidly attached to the C-terminus of the family 9 catalytic domain (cd) [1]. This domain is part of the active site and is essential for processivity [1]. CBM3c domains bind weakly to cellulose as they lack several of the conserved aromatic residues that are important for cellulose binding in family 3a and family 3b members [2]. All known plant cellulases belong to family 9, and most of the other members are eubacterial although there are two archael members and some fungal, earthworm, arthropod, chordate, echinoderma and molusk members. There are two subgroups in family 9, E1 which contains only cellulases from bacteria, including ones from both aerobes and anaeobes, and E2 which includes some bacterial and all nonbacterial cellulases [3]. An evolutionary study shows that the eucaryote members contain two monophyletic groups that are amcient; one including all animal members and the other including all plant members [4]. All known processive endoglucanase genes are in subgroup E1.
Most plant GH9 enzymes studied to date are endoglucanases ("cellulases", EC 3.2.1.4) with low or no activity on crystalline cellulose, but with discernible activity on soluble cellulose derivatives, including carboxymethyl cellulose (CMC), phosphoric acid swollen non-crystalline cellulose, and numerous plant polysaccharides including xylan, 1,3-1,4-ß-glucan, xyloglucan, and glucomannan [5, 6, 7, 8, 9]. The inability of plant “cellulases” to hydrolyze crystaline cellulose is distinct from microbial cellulases, whose modular structure and synergistic action with other enzymes facilitates effective degradation of crystalline cellulose. In muro, the substrates of plant cellulases may include xyloglucan, xylans, and non-crystalline cellulose, especially amorphous regions of cellulose where the microfibrils may be interwoven with xyloglucan. Due to their ubiquity and large numbers, the phylogeny of plant GH9 enzymes has been further sub-divided into three classes, which are described in detail on this special plant endoglucanase subpage.
Kinetics and Mechanism
The processive endoglucanase, Cel9A from Thermobifda fusca, has high activity on bacterial cellulose and is the only cellulase tested that can degrade crystalline regions in bacterial cellulose by itself although it prefers amorphous regions [10]. A related cellulase in Clostridium phytofermentans, which is the only family 9 cellulase encoded in its genome, has been shown to be essential for cellulose degradation by this organism. This is the only case where a single cellulase has been shown to be essential for growth on cellulose [11].
Catalytic Residues
There is a conserved Glu residue that functions as the catalytic acid and two conserved Asp residues that bind the catalytic water, with one functioning as the catalytic base and mutation of the other also greatly reduces activity on all substrates [12].
Three-dimensional structures
All known family 9 cd structures have an ( a / a ) 6 barrel fold that contains an open active site cleft that contains at least six sugar binding subsites -4 to +2 [1, 13]. In processive endoglucanases the catalytic domain is joined to a family 3c CBM that is aligned with the active site cleft [1].
Family Firsts
- First sterochemistry determination
- The steriospecificity of three family 9 cellulases were all determined to be inverting by NMR [14].
- First catalytic nucleophile identification
- Asp 58 in T. fusca Cel9A was shown to be the catalytic nucleophile by site directed mutagenesis and azide rescue [15].
- First general acid/base residue identification
- Glu555 was shown to be the catalytic acid in C. thermocellum CelD by site directed mutagenesis [16].
- First 3-D structure
- The structure of endocellulase CelD from Clostridium thermocellum was determined by X-ray crystallography (PDB ID 1clc) [17].
References
- Sakon J, Irwin D, Wilson DB, and Karplus PA. (1997). Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997;4(10):810-8. DOI:10.1038/nsb1097-810 |
- Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, and Steitz TA. (1996). Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 1996;15(21):5739-51. | Google Books | Open Library
- Tomme P, Warren RA, and Gilkes NR. (1995). Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1-81. DOI:10.1016/s0065-2911(08)60143-5 |
- Davison A and Blaxter M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol. 2005;22(5):1273-84. DOI:10.1093/molbev/msi107 |
- Master ER, Rudsander UJ, Zhou W, Henriksson H, Divne C, Denman S, Wilson DB, and Teeri TT. (2004). Recombinant expression and enzymatic characterization of PttCel9A, a KOR homologue from Populus tremula x tremuloides. Biochemistry. 2004;43(31):10080-9. DOI:10.1021/bi049453x |
- Yoshida K and Komae K. (2006). A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses in type II cell walls. Plant Cell Physiol. 2006;47(11):1541-54. DOI:10.1093/pcp/pcl020 |
- Ohmiya Y, Samejima M, Shiroishi M, Amano Y, Kanda T, Sakai F, and Hayashi T. (2000). Evidence that endo-1,4-beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant J. 2000;24(2):147-58. DOI:10.1046/j.1365-313x.2000.00860.x |
- Woolley LC, James DJ, and Manning K. (2001). Purification and properties of an endo-beta-1,4-glucanase from strawberry and down-regulation of the corresponding gene, cel1. Planta. 2001;214(1):11-21. DOI:10.1007/s004250100577 |
- Urbanowicz BR, Catalá C, Irwin D, Wilson DB, Ripoll DR, and Rose JK. (2007). A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J Biol Chem. 2007;282(16):12066-74. DOI:10.1074/jbc.M607925200 |
-
Chen, Arthur J. Stipanovic, William T. Winter, David B. Wilson and Young-Jun Kim. Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 2007: 14: 283-293.
- Tolonen AC, Chilaka AC, and Church GM. (2009). Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol. 2009;74(6):1300-13. DOI:10.1111/j.1365-2958.2009.06890.x |
- Zhou W, Irwin DC, Escovar-Kousen J, and Wilson DB. (2004). Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry. 2004;43(30):9655-63. DOI:10.1021/bi049394n |
- Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 |
- Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Béguin P, Wakarchuk WW, Kilburn DG, Miller RC Jr, Warren RA, and Withers SG. (1992). Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem. 1992;267(18):12559-61. | Google Books | Open Library
- Li Y, Irwin DC, and Wilson DB. (2007). Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol. 2007;73(10):3165-72. DOI:10.1128/AEM.02960-06 |
-
Lascombe, M.B., Souchon, H., Juy, M., Alzari, P.M. Three-Dimensional Structure of Endoglucanase D at 1.9 Angstroms Resolution. Deposited 1995, unpublished.
- HALL CB (1963). CELLULASE IN TOMATO FRUITS. Nature. 1963;200:1010-1. DOI:10.1038/2001010b0 |
- del Campillo E (1999). Multiple endo-1,4-beta-D-glucanase (cellulase) genes in Arabidopsis. Curr Top Dev Biol. 1999;46:39-61. DOI:10.1016/s0070-2153(08)60325-7 |
- Rose JK and Bennett AB. (1999). Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 1999;4(5):176-183. DOI:10.1016/s1360-1385(99)01405-3 |
- Mølhøj M, Pagant S, and Höfte H. (2002). Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol. 2002;43(12):1399-406. DOI:10.1093/pcp/pcf163 |
- Nicol F, His I, Jauneau A, Vernhettes S, Canut H, and Höfte H. (1998). A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998;17(19):5563-76. DOI:10.1093/emboj/17.19.5563 |
- Lane DR, Wiedemeier A, Peng L, Höfte H, Vernhettes S, Desprez T, Hocart CH, Birch RJ, Baskin TI, Burn JE, Arioli T, Betzner AS, and Williamson RE. (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 2001;126(1):278-88. DOI:10.1104/pp.126.1.278 |
- Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, and Shibata D. (2001). Role of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol. 2001;42(3):251-63. DOI:10.1093/pcp/pce045 |
- Henrissat B (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280 ( Pt 2)(Pt 2):309-16. DOI:10.1042/bj2800309 |
- Libertini E, Li Y, and McQueen-Mason SJ. (2004). Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J Mol Evol. 2004;58(5):506-15. DOI:10.1007/s00239-003-2571-x |
- Urbanowicz BR, Bennett AB, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason SJ, Patterson SE, Shoseyov O, Teeri TT, and Rose JK. (2007). Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol. 2007;144(4):1693-6. DOI:10.1104/pp.107.102574 |
- Peng L, Kawagoe Y, Hogan P, and Delmer D. (2002). Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science. 2002;295(5552):147-50. DOI:10.1126/science.1064281 |
- Szyjanowicz PM, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, and Turner SR. (2004). The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 2004;37(5):730-40. DOI:10.1111/j.1365-313x.2003.02000.x |
- Robert S, Bichet A, Grandjean O, Kierzkowski D, Satiat-Jeunemaître B, Pelletier S, Hauser MT, Höfte H, and Vernhettes S. (2005). An Arabidopsis endo-1,4-beta-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell. 2005;17(12):3378-89. DOI:10.1105/tpc.105.036228 |
- Takahashi J, Rudsander UJ, Hedenström M, Banasiak A, Harholt J, Amelot N, Immerzeel P, Ryden P, Endo S, Ibatullin FM, Brumer H, del Campillo E, Master ER, Scheller HV, Sundberg B, Teeri TT, and Mellerowicz EJ. (2009). KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol. 2009;50(6):1099-115. DOI:10.1093/pcp/pcp062 |
- Rudsander UJ, Sandstrom C, Piens K, Master ER, Wilson DB, Brumer Iii H, Kenne L, and Teeri TT. (2008). Comparative NMR analysis of cellooligosaccharide hydrolysis by GH9 bacterial and plant endo-1,4-beta-glucanases. Biochemistry. 2008;47(18):5235-41. DOI:10.1021/bi702193e |
- Brummell DA, Bird CR, Schuch W, and Bennett AB. (1997). An endo-1,4-beta-glucanase expressed at high levels in rapidly expanding tissues. Plant Mol Biol. 1997;33(1):87-95. DOI:10.1023/a:1005733213856 |
- Brummell DA, Hall BD, and Bennett AB. (1999). Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol. 1999;40(4):615-22. DOI:10.1023/a:1006269031452 |
- Kalaitzis P, Hong SB, Solomos T, and Tucker ML. (1999). Molecular characterization of a tomato endo-beta-1,4-glucanase gene expressed in mature pistils, abscission zones and fruit. Plant Cell Physiol. 1999;40(8):905-8. DOI:10.1093/oxfordjournals.pcp.a029621 |
- Shani Z, Dekel M, Tsabary G, and Shoseyov O. (1997). Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol. 1997;34(6):837-42. DOI:10.1023/a:1005849627301 |
- Catalá C, Rose JK, and Bennett AB. (1997). Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J. 1997;12(2):417-26. DOI:10.1046/j.1365-313x.1997.12020417.x |
- Bonghi C, Rascio N, Ramina A, and Casadoro G. (1992). Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Mol Biol. 1992;20(5):839-48. DOI:10.1007/BF00027155 |
- Boraston AB, Bolam DN, Gilbert HJ, and Davies GJ. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382(Pt 3):769-81. DOI:10.1042/BJ20040892 |
- Yoshida K, Imaizumi N, Kaneko S, Kawagoe Y, Tagiri A, Tanaka H, Nishitani K, and Komae K. (2006). Carbohydrate-binding module of a rice endo-beta-1,4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated. Plant Cell Physiol. 2006;47(11):1555-71. DOI:10.1093/pcp/pcl021 |