CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Glycoside Hydrolase Family 131
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
- Author: ^^^Jean-Guy Berrin^^^
- Responsible Curator: ^^^Jean-Guy Berrin^^^
Glycoside Hydrolase Family GH131 | |
Clan | GH-x |
Mechanism | not known |
Active site residues | not known |
CAZy DB link | |
https://www.cazy.org/GH131.html |
Substrate specificities
This family of glycoside hydrolases comprises only enzymes of fungal origin. Several of these enzymes contain cellulose-binding CBMs from family 1. Only one member (gene Pa_3_10940) has been characterized to date from the coprophilic ascomycete Podospora anserina [1]. This first member is a broad specificity β-glucanase with exo-β-1,3/1,6- and endo-β-1,4-glucanase activity [1].
Kinetics and Mechanism
The Podospora anserina GH131 beta-glucanase displays activity towards a broad range of β-glucan polysaccharides including laminarin, curdlan, pachyman, lichenan, pustulan and also cellulosic derivatives [1]. Analysis of the products released from polysaccharides revealed that this β-glucanase is an exo-acting enzyme on β-(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan substrates. Hydrolysis of short β-(1,3), β-(1,4) and β-(1,3)/β-(1,4) gluco-oligosaccharides confirmed this striking feature and revealed that the enzyme was performing in an exo-mode on the non-reducing end of gluco-oligosaccharides.
Catalytic Residues
Not known.
Three-dimensional structures
Not known.
Family Firsts
- First stereochemistry determination
- No experimental proof.
- First catalytic nucleophile identification
- No experimental proof.
- First general acid/base residue identification
- No experimental proof.
- First 3-D structure
- Not known.